ebook img

Fluid-structure interactions and uncertainties : Ansys and fluent tools PDF

279 Pages·2017·14.96 MB·English
by  El Hami
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fluid-structure interactions and uncertainties : Ansys and fluent tools

Fluid-Structure Interactions and Uncertainties Reliability of Multiphysical Systems Set coordinated by Abdelkhalak El Hami Volume 6 Fluid-Structure Interactions and Uncertainties Ansys and Fluent Tools Abdelkhalak El Hami Bouchaib Radi First published 2017 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2017 The rights of Abdelkhalak El Hami and Bouchaib Radi to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2016960066 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-84821-939-7 Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Chapter1.Fluid–StructureInteraction . . . . . . . . . . . . . . . 1 1.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.Fluid–structureinteractionproblem . . . . . . . . . . . . . . . . 2 1.2.1.Fluid–structurecouplingmethods . . . . . . . . . . . . . . . 5 1.2.2.Temporalcoupling. . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3.Spatialcoupling . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.Vibroacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1.Vibrationsofthree-dimensionalsolids . . . . . . . . . . . . 15 1.3.2.Acousticsoffluids . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.3.Numericalmethodsforcalculatingastructure coupledwithastagnantfluid . . . . . . . . . . . . . . . . . . . . . 18 1.4.Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.4.1.Aeroelasticproblems . . . . . . . . . . . . . . . . . . . . . . 23 1.4.2.Aerodynamicloads . . . . . . . . . . . . . . . . . . . . . . . 26 1.4.3.Problemequations . . . . . . . . . . . . . . . . . . . . . . . . 29 Chapter2.Fluid–StructureInteractionwithAnsys/Fluent . . . 35 2.1.PresentationofAnsys . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.CouplingwithAnsys . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.1.Typesofcouplinganalysis . . . . . . . . . . . . . . . . . . . 38 2.3.Exampleoffluid–structureinteractionusingthe“physics” environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.1.Fluidinmotion . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.2.Stagnantfluid . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.4.ExampleofinteractionusingFluent . . . . . . . . . . . . . . . . 54 vi Fluid–StructureInteractionsandUncertainties Chapter3.Vibroacoustics . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.Equationsoftheacousticandstructureproblems . . . . . . . . 60 3.2.1.Equationoftheacousticproblem . . . . . . . . . . . . . . . 60 3.2.2.Boundaryconditionsoftheacousticproblem . . . . . . . . 61 3.2.3.Equationofthestructureproblem . . . . . . . . . . . . . . . 62 3.2.4.Boundaryconditionsofthestructureproblem . . . . . . . . 62 3.3.Vibroacousticproblem . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.1.Problemstatement . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3.2.Boundaryconditionsattheinterface. . . . . . . . . . . . . . 65 3.3.3.Finiteelementapproximation . . . . . . . . . . . . . . . . . 66 3.4.Studyofanelasticplatecoupledwithafluidcavity . . . . . . . 86 3.4.1.Equationsofthecoupledfluid–structureproblem . . . . . . 87 3.4.2.Variationalformulationofthefluid . . . . . . . . . . . . . . 88 3.4.3.Variationalformulationoftheplate . . . . . . . . . . . . . . 92 3.4.4.Numericalresults . . . . . . . . . . . . . . . . . . . . . . . . 94 3.5.Studyofthepropellerofaboat. . . . . . . . . . . . . . . . . . . 97 3.5.1.Numericalresults . . . . . . . . . . . . . . . . . . . . . . . . 99 Chapter4.Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . 103 4.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2.Computationalmethod . . . . . . . . . . . . . . . . . . . . . . . 104 4.2.1.Conformalmesh . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.2.2.Immersedboundarymethods . . . . . . . . . . . . . . . . . . 105 4.2.3.Volume-basedfictitiousdomainmethods . . . . . . . . . . . 106 4.3.Aerodynamicproblem’sresolution . . . . . . . . . . . . . . . . 107 4.3.1.Mobiledomain. . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.2.Weakformulation . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.3.Evaluatingtheenergyofthesystem . . . . . . . . . . . . . . 111 4.3.4.Numericallysolvingthesystem . . . . . . . . . . . . . . . . 116 4.3.5.Discretizationbyfiniteelements . . . . . . . . . . . . . . . . 120 4.4.Finiteelementmethodforthesolid . . . . . . . . . . . . . . . . 123 4.4.1.Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.4.2.Assemblingthesystem . . . . . . . . . . . . . . . . . . . . . 126 4.4.3.Solvingthesystemofalgebraicequations . . . . . . . . . . 126 4.4.4.IntegrationbyGaussianquadrature . . . . . . . . . . . . . . 126 4.4.5.Advancingthetimestepusingthe Hilbert–Hugues–Tayloralgorithm . . . . . . . . . . . . . . . . . . 127 4.4.6.LinearizationusingtheNewton–Raphsonalgorithm. . . . . 129 4.5.Finitevolumesforthefluid . . . . . . . . . . . . . . . . . . . . . 130 4.5.1.Generictransportequation . . . . . . . . . . . . . . . . . . . 130 Contents vii 4.5.2.Conservationpropertyofthemethod . . . . . . . . . . . . . 131 4.5.3.Thedifferentstepsinthemethod . . . . . . . . . . . . . . . 131 4.5.4.Integratingthemodelequation . . . . . . . . . . . . . . . . . 132 4.5.5.Controlvolumes . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.5.6.Physicalinterpolation . . . . . . . . . . . . . . . . . . . . . . 135 4.5.7.Evaluatingthefluxthroughthefaces . . . . . . . . . . . . . 135 4.5.8.Centeredscheme. . . . . . . . . . . . . . . . . . . . . . . . . 136 4.5.9.Upwindscheme . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.5.10.Hybridscheme . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.5.11.Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.6.Couplingprocedures . . . . . . . . . . . . . . . . . . . . . . . . 141 4.6.1.Couplingstrategies . . . . . . . . . . . . . . . . . . . . . . . 141 4.6.2.Implicitpartitionedcoupling . . . . . . . . . . . . . . . . . . 142 4.7.Numericalresults . . . . . . . . . . . . . . . . . . . . . . . . . . 145 4.7.1.Staticanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 145 4.8.Studyofa3Dairplanewing . . . . . . . . . . . . . . . . . . . . 150 4.8.1.Modalanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.9.Transientanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Chapter5.ModalReductionforFSI . . . . . . . . . . . . . . . . . 163 5.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.2.Dynamicsubstructuringmethods . . . . . . . . . . . . . . . . . 164 5.2.1.Linearproblems . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.2.2.Nonlinearproblems . . . . . . . . . . . . . . . . . . . . . . . 167 5.3.Nonlinearsubstructuringmethod . . . . . . . . . . . . . . . . . 169 5.3.1.Vibrationalequationsofasubstructure . . . . . . . . . . . . 170 5.3.2.Fixed-interfaceproblem. . . . . . . . . . . . . . . . . . . . . 171 5.3.3.Staticbearingproblem . . . . . . . . . . . . . . . . . . . . . 172 5.3.4.Representingthesystemwiththelinear Craig–Bamptonbasis. . . . . . . . . . . . . . . . . . . . . . . . . . 173 5.3.5.ModelreductionusingtheapproachofShawandPierre . . 174 5.3.6.Assemblingthesubstructures . . . . . . . . . . . . . . . . . 176 5.4.Properorthogonaldecompositionforflows . . . . . . . . . . . . 178 5.4.1.PropertiesofPODmodes . . . . . . . . . . . . . . . . . . . . 179 5.4.2.SnapshotPOD . . . . . . . . . . . . . . . . . . . . . . . . . . 179 5.4.3.Findinglow-orderexpressionsfordynamicsystems . . . . . 180 5.5.Dynamicsubstructure/acousticsubdomaincoupling . . . . . . . 185 5.5.1.Basicequations . . . . . . . . . . . . . . . . . . . . . . . . . 187 5.5.2.Variationalformulations . . . . . . . . . . . . . . . . . . . . 190 5.5.3.Discretizationbyfiniteelements . . . . . . . . . . . . . . . . 191 5.5.4.Calculatingthelocalmodes . . . . . . . . . . . . . . . . . . 194 viii Fluid–StructureInteractionsandUncertainties 5.5.5.Modalsynthesis . . . . . . . . . . . . . . . . . . . . . . . . . 196 5.6.Numericalsimulation . . . . . . . . . . . . . . . . . . . . . . . . 199 5.6.1.Elasticring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 5.6.2.Boatpropeller . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Chapter6.Reliability-basedOptimizationforFSI . . . . . . . . 211 6.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.2.Reliabilityinmechanics. . . . . . . . . . . . . . . . . . . . . . . 212 6.2.1.Randomvariables . . . . . . . . . . . . . . . . . . . . . . . . 212 6.2.2.Reliabilityfunction . . . . . . . . . . . . . . . . . . . . . . . 214 6.3.Failureinmechanics. . . . . . . . . . . . . . . . . . . . . . . . . 215 6.3.1.Failurescenarios . . . . . . . . . . . . . . . . . . . . . . . . . 216 6.3.2.Expressionofthefailureprobability. . . . . . . . . . . . . . 217 6.4.Reliabilityindex . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 6.4.1.Rjanitzyne–Cornellindex . . . . . . . . . . . . . . . . . . . . 217 6.4.2.Hasofer–Lindindex . . . . . . . . . . . . . . . . . . . . . . . 218 6.5.Mechanoreliabilitycoupling . . . . . . . . . . . . . . . . . . . . 218 6.5.1.Reliability-basedcalculationmethods . . . . . . . . . . . . . 219 6.5.2.MonteCarlomethod . . . . . . . . . . . . . . . . . . . . . . 220 6.5.3.FORM/SORMapproximationmethods . . . . . . . . . . . . 221 6.6.Reliability-basedoptimizationinmechanics . . . . . . . . . . . 224 6.6.1.Deterministicoptimization . . . . . . . . . . . . . . . . . . . 225 6.6.2.DifferentapproachestoRBDO. . . . . . . . . . . . . . . . . 226 6.6.3.Classicalapproach. . . . . . . . . . . . . . . . . . . . . . . . 228 6.6.4.Hybridapproach . . . . . . . . . . . . . . . . . . . . . . . . . 229 6.6.5.Frequency-basedhybridapproach . . . . . . . . . . . . . . . 231 6.7.SPmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 6.7.1.Formulationoftheproblem. . . . . . . . . . . . . . . . . . . 234 6.8.Numericalresults . . . . . . . . . . . . . . . . . . . . . . . . . . 237 6.8.1.Reliabilitycalculationforanairplanewing . . . . . . . . . . 237 6.8.2.ApplicationofRBDOtotheairplanewing . . . . . . . . . . 239 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Preface The progress achieved by digital and software tools in the past 40 years has allowed scientists to dramatically improve their understanding of the world. The development of mathematical models has allowed us to work on increasingly sophisticated problems in a wide range of fields: predicting the behavior of production tools, transportation, the environment, etc. Managing thesecomplexproblemshasbeenfacilitatedwithineachdisciplineseparately but also from a cross-disciplinary perspective, allowing more general phenomenatobetackled. Thefieldoffluid–structureinteractionsunitesthestudyofallphenomena involving a coupling between the motion of a structure and the motion of a fluid.Therangeofstudiedphenomenaisverybroad,fromvibratingcylinders in flows, such as in the nuclear industry, to vibrating structures in turbulent flowsandfree-surfacephenomenainreservoirs.Onewell-knownexampleof fluid–structureinteractionandthecomplexityofthecouplingsinvolvedisthe collapseoftheTacomabridgein1940, whichbeganvibratingtothepointof resonance frequency under the effect of violent winds, causing it to be completely destroyed. This shows just how important it is to prepare reliable models in advance of any project so that this kind of behavior may be predicted. Wind tunnels, such as in aeronautics, allow us to inspect the behavior of the structure on the ground without needing to perform tests in flight. The EulerandNavier–Stokesequationshavemadeitpossibletorigorouslydefine a physical framework for characterizing the behavior of the aircraft in terms of a set of different parameters such as the velocity or Mach number. Finite elementmodelshavegreatlysimplifiedtheprocessofrepresentinganaircraft modelanditsstructure,aswellasthewaythattheaircraftrespondstostress. x Fluid–StructureInteractionsandUncertainties However, the complexity of the studied phenomena is reflected in the prohibitive computational costs, which motivates us to search for reduced modelswithmorerealisticcomputationtimes.Byareducedmodel,wemean a description as a low-dimensional system obtained by analyzing classical numerical formulations. Acheiving this reduction incurs an initial cost, but this cost is largely offset if the reduced model is later found to be applicable forconfigurationsofparametersotherthanthoseoftheinitialformulation. Thus, just like in other areas of the industry, optimization research is extremelyactivewithintheaviationsector.Onesignificantdevelopmentsince the late 1980s has been the introduction of uncertainty parameters into numerical models. Optimization techniques in the presence of uncertainty in aerodynamics have only been studied more recently, beginning in the early 2000s. Their introduction was motivated by the need to account for specific typesofsituationsthatmakeittoodifficulttopreciselyevaluatetheaircraft’s behavior. For example, during the aircraft design phase, in order to meet the various different criteria or eliminate certain problems encountered by the model, the model is able to adjust itself to more effectively meet the requirements and needs that it is designed to satisfy. The initial drafts of the modelarenotfixed,butforsafetyreasonsitisnecessarytoensurethroughout the development process that the structure is capable of withstanding the stresses that it is likely to encounter in operating conditions. One way of accounting for these potential changes is to introduce uncertainty into the model. Furthermore, when designing aircraft, manufacturers are naturally interestedinmaximizingtheperformanceofeachvehicle: reducingpollution, noise, drag, increasing the range, maximizing stability, etc. Minimizing the structural mass is an important objective for manufacturers as it allows other optimization criteria such as reducing pollution or extending the range to be satisfied.Butlessmasswillalsohavenegativerepercussionsonothercriteria, including the stability of the aircraft in flight, for example by rendering it susceptibletothephenomenonof“fluttering”. Manufacturers must therefore perform constrained optimization: minimizingtheweightofthewingwhileensuringthatflutteringcannotaffect the airplane within its flight envelope. In such a case, optimization problems have a cross-disciplinary character, since they exhibit behaviors that include bothstructuralandaerodynamicaspects. Thegoalisnowtointegratetheaspectofuncertaintymentionedaboveinto theoptimizationprocess.However,todothis,wemustfirstidentifythenature Preface xi oftheseuncertainties,anddecidehowweshouldrepresentthem.Severaltypes ofuncertaintyhavebeenidentifiedandclassifiedaccordingtotheirnature. Accountingforuncertaintyhasbeenstudiedinanumberofresearchareas, but, until recently, in aeronautics research it was not possible to account for orquantifystructuraluncertaintieswithintheoptimizationproceduresdueto the limitations of numerical tools and a lack of theoretical understanding of their impact within reliability studies. Engineers have therefore been forced to implement alternative procedures to simplify the integration of structural uncertainties into model development. The first studies on this topic in the aviationsectorwereonlyconductedinthe1990s, atwhichpointthisfieldof researchbegantoproducetangibleresults. In the case of optimization problems with probabilistic constraints, reliability-based optimization, which is extremely common in industrial contexts, replaces these probabilistic constraints with another deterministic optimization problem derived by techniques of approximation. The primary difficulty lies in evaluating the reliability of the structure, which is itself the result of another given optimization procedure. Reliability analysis is performed at the optimal point in order to determine the reliability index of thelimitingstatethatisbeingconsidered. This book presents the different aspects of fluid–structure interaction: vibroacousticsandaerodynamics,andthevariousnumericalmethodsusedto simulatethemnumerically. One chapter is devoted to the question of model reduction in fluid–structure interaction problems. We begin by presenting dynamic substructuring methods in linear and nonlinear cases. We then give a descriptionofthemethodofproperorthogonaldecompositionforfluidflows. Finally,wepresentamodalsynthesismethodforsolvinglarge-scalecoupled fluid-structure problems. This method couples a dynamic substructuring method of the type proposed by Craig and Bampton with an acoustic subdomainmethodbasedonanacousticformulationofthevelocitypotential. To account for uncertainty, one chapter presents concepts associated with reliability and its objectives and benefits in mechanics, methods for calculating the probability of failure, simulation methods such as the Monte Carloandresponsesurfacemethods,andapproximatemethodsforanalyzing thereliabilityandcalculatingthereliabilityindexbythefirst-orderreliability method (FORM) and the second-order reliability method (SORM). We then giveadetailedpresentationoftheimplementationofthelatterapproachinthe

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.