HindawiPublishingCorporation ComputationalandMathematicalMethodsinMedicine Volume2013,ArticleID293128,18pages http://dx.doi.org/10.1155/2013/293128 Research Article Fluid Structural Analysis of Human Cerebral Aneurysm Using Their Own Wall Mechanical Properties AlvaroValencia,1PatricioBurdiles,1MiguelIgnat,1JorgeMura,2 EduardoBravo,2RodrigoRivera,2andJuanSordo2 1DepartmentofMechanicalEngineering,UniversidaddeChile,8370448Santiago,Chile 2InstituteofNeurosurgeryDr.Asenjo,7500691Santiago,Chile CorrespondenceshouldbeaddressedtoAlvaroValencia;[email protected] Received29May2013;Revised31July2013;Accepted1August2013 AcademicEditor:NestorV.Torres Copyright©2013AlvaroValenciaetal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense, whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. ComputationalStructuralDynamics(CSD)simulations,ComputationalFluidDynamics(CFD)simulation,andFluidStructure Interaction(FSI)simulationswerecarriedoutinananatomicallyrealisticmodelofasaccularcerebralaneurysmwiththeobjective ofquantifyingtheeffectsoftypeofsimulationonprincipalfluidandsolidmechanicsresults.EightCSDsimulations,oneCFD simulation,andfourFSIsimulationsweremade.Theresultsallowedthestudyoftheinfluenceofthetypeofmaterialelementsin thesolid,theaneurism’swallthickness,andthetypeofsimulationonthemodelingofahumancerebralaneurysm.Thesimulations usetheirownwallmechanicalpropertiesoftheaneurysm.ThemorecomplexsimulationwastheFSIsimulationcompletelycoupled withhyperelasticMooney-Rivlinmaterial,normalinternalpressure,andnormalvariablethickness.TheFSIsimulationcoupledin onedirectionusinghyperelasticMooney-Rivlinmaterial,normalinternalpressure,andnormalvariablethicknessistheonethat presentsthemostsimilarresultswithrespecttothemorecomplexFSIsimulation,requiringone-fourthofthecalculationtime. 1.Introduction Theaneurysmwallisgenerallycomposedofonlyintimaand adventitiaoflayeredcollagen.Wallstrengthisrelatedtoboth Ananeurysmisalocalizeddilationofthewallofanartery; collagen fiber strength and orientation. The average break it appears most frequently in the abdominal aorta or in strength of aneurysm wall ranged from 0.7MPa to 1.9MPa the brain vasculature. Intracranial cerebral aneurysms are [2]. Seshaiyer et al. [3] reported the mechanical properties formed preferentially in abrupt curvatures or bifurcations of cerebral aneurysms. It was found that the lesions were of arteries belonging to the circle of Willis. In general, its stifferthanpreviouslyreportedexperimentaldataofScottet geometry resembles a projecting dome on the wall of the al. [4] and To´th et al. [5] and also stiffer as the mechanical artery. The formation of aneurysms represents the loss of properties of cerebral arteries reported by Monson et al. thestructuralintegrityofthewall,butthereasonsfortheir [6]. formation and growth are still not clear. A subarachnoid Wall shear stress (WSS) modulates endothelial cell hemorrhageduetotheruptureofanintracranialaneurysm remodelling via realignment and elongation. Consequently, isadevastatingeventassociatedwithlargeratesofmorbidity fluid dynamics play important roles in the growth and andmortality.Approximately12%ofthepatientsdiebefore ruptureofcerebralaneurysms.Aneurysmruptureisrelated receivingmedicalattention,40%ofhospitalizedpatientsdie toalowlevelofWSSandthereforeisassociatedwithlowflow within one month of the hemorrhage, and more than one- conditions.Theaneurysmregionwithlowflowconditionsis third of the patients that survive are left with an important normally the fundus, [7]. High WSS is regarded as a major neurologicaldeficit[1]. factorinthedevelopmentandgrowthofcerebralaneurysms A cerebral aneurysm wall has a thin tunica media, and [8].ItisassumedthataWSSofapproximately2Paissuitable the internal elastic lamina is normally severely fragmented. formaintainingthestructureoftheaneurysmwall,whereas 2 ComputationalandMathematicalMethodsinMedicine z 𝜇)m 0 0760.454 m) ( 320 1200 𝜇( 900 640 960 600 m) 𝜇 ( (𝜇 1280 300 m) 1600 x (a) (b) Figure1:(a)Microtractiontestingmachinemountedunderamicroscope.(b)Measurementofthetissuethicknessofthewallofaneurysm 1[13]. alowerWSSresultsinthedegenerationofendothelialcells Table1:Fittingcoefficientsthroughfive-parameterMooney-Rivlin viatheapoptoticcellcycle[9]. modelandlinearelasticmodel. This problem can be investigated using fluid structure Model Coefficients(MPa) interaction (FSI) simulations. However, few FSI investiga- tions have been performed on patient specific aneurysms MooneyRivlin, 𝐶10 =0.3848,𝐶01=−0.0891, models[10,11].Toriietal.[10]investigatedtheFSIincerebral five-parameters 𝐶11=0.5118,𝐶20=0.5109,𝐶02=0.4912 Linearelastic 𝐸=1.7742 aneurysmsundernormalandhypertensivebloodpressures. Toriietal.[11]havecalculatedthatthewalldisplacementina modelwithvariablewallthicknesswas60%largerthanthat data of the stress versus stretch ratio. The strain energy oftheuniformwallmodel. function𝑤isgiveninthemodelby OurgrouphasdoneFSIsimulationworkontheinterac- tion between the wall of the aneurysm and the blood. The 𝑤(𝜆)= 𝐶 (𝐼 −3)+𝐶 (𝐼 −3) simulations have been made using computational geome- 10 1 01 2 trreiseusltsobotfaitnheedsifmroumlataionngsioignrdamicasteofa rreealaltiaonneubreytswmees.nThthee +𝐶11(𝐼1−3)(𝐼2−3)+𝐶20(𝐼1−3)2 (1) shear stress on the wall caused by the blood flow and the +𝐶 (𝐼 −3)2, 02 2 zones of the aneurysm’s wall that are subjected to greater stress [12]. All the simulations used mechanical behavior where𝐼1 and𝐼2 arethefirstandsecondstraininvariantsof models of the aneurysm’s wall developed by other authors the Cauchy-Green deformation tensor 𝐶𝑖𝑗, 𝐶𝑖𝑗 = 2𝜀𝑖𝑗 + 𝛿𝑖𝑗, [3,4]. where𝛿𝑖𝑗 istheKroneckerdelta;𝐶10,𝐶01,𝐶11,𝐶20,and𝐶02 As part of previous work done by our team [13], the arematerialconstants,ADINAmanual[14]. mechanicalbehaviorundertractionofacerebralaneurysm A linear elastic model was also used in which Young’s extractedfromapatientwascharacterized,andamodelofthe modulus was obtained from the first two parameters of the mechanical behavior of the aneurysm’s wall was developed. Mooney-Rivlinmodel,followingtherecommendationsofthe Figure1 shows the traction testing machine used and the ADINAmanual[14]: measurement of the thickness of one of the samples. The present work consists in an advanced FSI modeling of the 𝑇=𝐸∗𝑒, (2) mechanicalbehaviorofcerebralaneurysms,consideringthe backgroundinformationonthistypeofbehaviorobtainedin 𝐸=6∗(𝐶10+𝐶01), (3) [13] in terms of experimental characterization and models. Only a single geometry will be used in the simulations, where 𝑇 is the stress, 𝑒 is the engineering strain, and 𝐸 is correspondingtothedigitalizationoftheaneurysmusedin Young’smodulusofthematerial. [13]tocreateitsmodel. Table1 shows the five parameters of the hyperelastic The simulations were made using the ADINA 8.8.0 Mooney-Rivlin model and Young’s modulus obtained from commercialsoftware.Afive-parameterhyperelasticMooney- the experimental data from [13]. Figure2(a) shows curves Rivlinmodelwasusedtocharacterizethehyperelasticbehav- obtainedfromtheexperimentaltestsin[13],withthegreen ioroftheaneurysmsamples;thismodelwithfiveparameter curvecorrespondingtothefitmadewiththefive-parameter wasfoundin[13]asthemodelthatbestfittheexperimental Mooney-Rivlin model of the experimental data from [13] ComputationalandMathematicalMethodsinMedicine 3 1.4 5 1.2 4 1 3 a) 0.8 Pa) P M Stress (M 0.6 Stress ( 12 0.4 0.2 0 0 −1 1 1.05 1.1 1.15 1.2 1.25 1.3 0.9 0.95 1 1.05 1.1 1.15 Stretch ratio (𝜆) Stretch ratio (𝜆) Linear elastic Toth Costalat Mooney-Rivlin Seshaiyer 1 Valencia Seshaiyer 2 (a) (b) Figure2:(a)ModelofthewallmaterialoftheaneurysmfittedthroughMooney-RivlinandthelinearelasticmodelbyContente[13].(b) HyperelasticmodelsbySeshaiyeretal.[3],To¨thetal,[5],CostalatandSanchez[15]andContente[13]. and the blue curve to that made with the linear elastic oftheaneurysmsthatcanbeusedintheADINAsimulation model approximation. Figure2(b) shows a comparison of software. For that purpose a case delivered by the Instituto thehyperelasticcurvemodeledthroughMooney-Rivlinwith de Neurocirug´ıa Asenjo was available. The examinations othermodelsfoundintheliterature,Seshaiyer[3],To´thetal. were obtained with a Philips Integris Allura 3D Rotational [5],andCostalatandSanchez[15]. Angiograph, and they deliver dimensional computational CostalatandSanchez[15]havecharacterizedthemechan- filesinVRMLformat,asseeninFigure3(a).SincetheVRML icalpropertiesofsixteenintracranialaneurysms,forruptured files cannot be used directly with the ADINA simulation and unruptured samples. They have found a significant software, a meticulous reconstruction of each case must be modification in biomechanical properties, the unruptured madetoobtainanadequatefiletomakethesimulation.The aneurysmsweresoft,theymeasuredonlytoastrainof10%, methoddevelopedin[17]allowsthistasktobeperformedin and therefore they do not report rupture strain and stress. a couple of hours. The reconstructed CAD model is shown Valencia’smodelfallswithintherangesdescribedbyCostalat inFigure3(b).Thedifferencebetweentheoriginalgeometry andSanchez[15]andotherauthors[3,5]. andthereconstructedoneislessthan5%.Theaneurysmsin Inthisinvestigation,wepresentdetailednumericalsim- thereconstructedgeometryassignedthethicknessmeasured ulationsoffluidandsolidmechanicsinananatomicallyreal- in [13], while the artery assigned a theoretical thickness istic cerebral aneurysm model using their own mechanical that corresponds to 10% of its diameter. The aneurysms are properties.Thepatientspecificgeometrywasreconstructed joined with the artery through a special section that varies from3Drotationalangiographyimagedata.Thepredictions from the thickness of the aneurysm to the thickness of using CFD, CSD, and FSI in fluid and solid variables on the artery. Figure4 shows a detail of the variable thickness the aneurysm 1 are compared. The effects of hypertensive section. pressureload,aneurysmwallthickness,andwallmodelare The complete geometry is a single volume and is used alsoreported.Theprincipalgoalofthisworkistoquantify fortheCFDandFSIsimulations.Ahollowgeometryisused the differences in prediction of fluid and solid variables to carry out the CSD simulations; it has artery thickness between a time expensive complete FSI simulation with forthearteries,aneurysmthicknessfortheaneurysms,and CSD simulations. In addition, preprocedural planning for a variable thickness for the junction between artery and cerebral aneurysm treatments will benefit from an accurate aneurysm. Table2 summarizes the data of interest of the assessmentofflowpatterns,effectivewallstress,andstrainin completegeometry,andTable3summarizestherelevantdata theaneurysm,aspresentedherebymeansofcomputational ofbothaneurysms. simulations. Table4showsthethicknessesoftheaneurysm,theartery, and the section that joins both of them (aneurysm-artery 2.Methodology junction or A-A junction). The thickness of the artery is considered to be 10% of its diameter. Some simulations use 2.1.Reconstruction. Tocarryoutthefluiddynamicssimula- halftheaneurysmthicknessshowninTable4,inordertosee tionsofrealcases,itisnecessarytogenerate3Dgeometries theresultsinathinneraneurysm. 4 ComputationalandMathematicalMethodsinMedicine Aneurysm 1 Outflow Aneurysm 2 Inflow (a) (b) Figure3:(a)Imageobtainedbyangiography.(b)CADobtainedfromthereconstructionoftheoriginalgeometry. Table3:Relevantaneurysmdimensions. Neckdiameter Aneurysm Width(mm) Length(mm) (mm) 1(larger) 9.2 16.1 20.8 2(smaller) 3.42 3.33 4.39 Table 4:Thickness oftheaneurysm, theartery,and thejunction betweenthem. Section Thickness(mm) Aneurysm 0.35 A-Ajunction 0.38 Artery 0.4 whereVisthevelocity,𝜌isthefluiddensity,𝜏arethestress, and𝑓arethebodyforces. The fluid is considered incompressible, and the flow is Figure4:Detailofthethicknessoftheaneurysm,theartery,and consideredlaminar.Carreau’smodel(6)isusedtomodelthe thesectionbywhichtheyarejoined. viscosity𝜇: 𝜇(𝛾)̇ =𝜇 +(𝜇 −𝜇 )(1+𝐴𝛾2̇ )𝑛. (6) ∞ 0 ∞ Table2:Relevantdimensionsforthereconstructedgeometry. TheCarreaubloodmodelpredictsdecreasingviscosityat Artery high strain, where 𝜇0 and 𝜇∞ are low and high shear rate Entrancediameter(mm) 4.98 asymptotic values and the parameters 𝐴 and 𝑛 control the Entrancearea(mm2) 19.46 transitionregionsize.Wehavetakenthevaluesusedin[16] TotalCADvolume(mm3) 3862 as 𝜇∞ = 0.00345Ns/m2, 𝜇0 = 0.056Ns/m2, 𝑘 = 10.976, and𝑚 = −0.3216.Thedensityofbloodwasassumedtobe constant𝜌=1050kg/m3. The wall of the aneurysm is considered to be a linear 2.2. Constitutive Equations. The Navier-Stokes equations elasticmaterial(7)orahyperelasticmaterial(8): allowmodelingfluids.Theseequationsconsidertheconser- vationofmass(4)andtheconservationofmomentum(5)in 𝑆=𝐶𝜀, (7) thefluid: 1 𝜕𝑊 𝑆= ( ), (8) ∇⋅V=0, (4) 2 𝜕𝜀 𝜕V where𝑆isthesecondPiola-Kirchhoffstress,𝜀istheGreen- 𝜌𝜕𝑡 +∇⋅(𝜌VV−𝜏)=𝑓𝐵, (5) Lagrangestrain,and𝑊isthestrainenergyofthematerial. ComputationalandMathematicalMethodsinMedicine 5 0.7 18000 16000 0.6 14000 0.5 12000 d (m/s) 0.4 ure (Pa) 10000 Spee 0.3 Press 68000000 0.2 4000 0.1 2000 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Time (s) Time (s) Speed pulse Pressure pulse (a) (b) Figure5:(a)Bloodvelocitypulseappliedtotheentrancesectionoftheartery.(b)Bloodpressurepulseappliedtotheoutletsectionofthe artery. 2.3. Boundary Conditions. For the simulations an averaged path.Toreplicatethiseffect,anoscillatingpressureresistance bloodpulseisusedinthiscase.Inthestudy,Valenciaelal.[12] between80and120(mmHg)inphasewiththeheartbeatsis usedonepulseforeachpatient.Althoughthisallowsastudy appliedattheoutletsofthesection.Thisallowsthereplication closertoeachpatient’sreality,itaddsanimportantvariableto oftheclosedcircuitfollowedbythebloodflow.Figure5(b) beconsideredintheanalysisoftheresults:theheartrate.In showstwopressurepulses.Itisimportanttospecifythatthis viewofthelargedifferenceinheartbeatfromonepatientto pressureisrelative,notabsolute. another,itisnotdifficulttounderstandthatthiswillinfluence The boundary conditions for CSD simulations imposed theresults,andwhencomparingonecasewithanother,itwill on the models was a time-dependent pressure on the inner notbeknownexactlywhetherthedifferencesfoundaredue wallrepresentativefornormalhumanpressurevariationwith todifferencesintheheartrateorintheshapeoftheaneurysm. a heart rate of 70beats/min; see Figure5(b). The effects Thatis,whyitwasdecidedtouseanaveragedpulseinthis of hypertension are reported using the temporal pressure case.Thisaveragedpulsecannotbejustanyone,becausethe variation between 180mmHg and 100mmHg. The outside pulse of a healthy person is different from that of a sick pressureduethecerebrospinalfluidwasconsideredconstant person,soanaveragepulsewasobtainedfromcolorduplex as3(mmHg)(400(Pa))wasusedbyValenciaetal.[12].The Dopplerimagesof36patientswithcerebralaneurysms. modelwasfixedontheinflowandoutflow. Tomakeacorrectsimulationofbloodflowintheartery,it CSDsimulationsweremadewithapressurepulse200% isnecessarytousethecorrectvelocityprofileattheentrance. greaterthanthatshowninFigure5(b),attemptingtoelimi- For pulsating flows in the arteries the classical parabolic natetheincreasedinternalpressureasacausefortherupture profile is not sufficient to describe the flow of the velocity ofaneurysms.Thecerebralarteriesarenotfoundinanempty profile. Womersley’s solution for a pulsating flow in a rigid environment,buttheyareratherimmersedincerebralfluid, tubehasbeenusedpreviously[16]withgoodresults.Tobe whichproducesaconstantexternalpressurethatcompresses abletoimplementWomersley’sprofileinthesimulations,use thearteriesradially. will be made of the method developed in [16], which use On the FSI interface states that (i) displacements of the theMATLABcalculationsoftwaretodeveloptheprofileand fluid and solid must be compatible, (ii) tractions at this forlaterexportingtoADINA.Figure5(a)showstheaverage boundarymustbeatequilibrium,and(iii)fluidobeystheno- velocity profile in two pulses. Numericat tests performed slipcondition.Theseconditionsaregivenasfollows: by Valencia et al. in [12] have showed that after the second 𝛿 =𝛿 , cardiac cycle, the results of velocity and pressure do not 𝑠 𝑓 (9) changeinsimilargeometriesofcerebralaneurysms,andthe 𝜎 ⋅𝑛̂ =𝜎 ⋅𝑛̂ , 𝑠 𝑠 𝑓 𝑓 (10) resultsofthefirstcyclearedifferentbecauseallvariablesstart thesimulationsatzero. 𝑢=𝑢 , 𝑔 (11) To simulate correctlythepath ofthe blood throughthe cerebral arteries, an outlet condition must be used for the where 𝛿, 𝜎, and 𝑛̂ are displacement, stress tensor, and bloodflow.Ifanoutletconditionisnotimposed,wewould boundary normal with the subscripts 𝑓 and 𝑠 indicating a haveaflowthatissetfreegoingoutoftheartery,therefore property of the fluid and solid, respectively. The condition not representing reality, because the blood follows a closed of (10)doesnotrequireidenticalmatchingmeshesbetween 6 ComputationalandMathematicalMethodsinMedicine Table5:Numberingandcharacterizationofthesimulationsmade. Simulation Type Elements Pressure Thicknessaneurysm Material Coupling 1 CFD Tetrahedral Normal — — — 2 CSD Shell Normal Normal L.E — 3 CSD Shell H.T Normal L.E — 4 CSD Shell Normal 1/2 L.E — 5 CSD Shell Normal Normal M.R — 6 CSD Shell H.T Normal M.R — 7 CSD Shell Normal 1/2 M.R — 8 CSD Tetrahedral Normal Normal L.E — 9 CSD Tetrahedral Normal Normal M.R — 10 FSI Tetrahedral Normal Normal L.E Complete 11 FSI Tetrahedral Normal Normal L.E Onedirection 12 FSI Tetrahedral Normal Normal M.R Complete 13 FSI Tetrahedral Normal Normal M.R Onedirection H.Tishypertensionbloodpressurerangedbetween13200Paand23800Pa.NormalpressureisthebloodpressurepulseshowninFigure5(b),L.E.isthelinear elasticwallmodel,andM.R.isthehyperelasticMooney-Rivlinwallmodel. the two domains and instead supports the use of solution Plane 4 mappingtoestablishtheequilibrium. Plane 3 2.4.GeneralConsiderationsoftheSimulations. Thirteensim- ulationsweremadeinthisresearch,andtheircharacteristics are summarized in Table5. One CFD simulation (rigid walls),eightCSDsimulations,andfourFSIsimulationswere Plane 2 performed. CSD simulations 2, 3, and 4 use linear elastic material, CSDsimulations5,6,and7usehyperelasticMooney-Rivlin material with the approximation of shell elements; in these Plane 1 simulationweinvestigatethewallthicknessandhypertensive pressureeffects.IntheCSDsimulations8and9weinvestigate theeffectof3Dtetrahedralelements. TheFSIsimulations10and11uselinearelasticmaterial; we investigate the effect of the method coupling, and in the FSI simulations 12 and 13 we investigate the effect of the method coupling using a hyperelastic Mooney-Rivlin Figure 6: Control planes. Plane 1 or entrance plane, plane 2 or material. middleplane,plane3orupperplane,andplane4ortransverseplane The coupling indicates how the solid and fluid models ofaneurysm1. interactwithoneanother.Itispossibletohaveacompletely coupledFSIsimulationinwhichanequilibriumofstrength anddisplacementsbetweensolidandfluidissoughtforevery time step, requiring several iterations between them and Itisimportanttospecifythatthecontrolelementcontains thereforelongercalculationtime.ItisalsopossibletouseFSI all the control points, so that the control element contains simulations coupled in one direction. The results obtained thedataforthefournodesoftheelement.Thedatumforthe in theCFD simulationareappliedto thesolidat each time controlpointisthenodewiththegreatervalues,becausein step,butinthiscasethesoliddoesnotaffectthefluid.This thecaseoftheCFDthenodesthatareonthewall(1,2,and decreases calculation time and the precision of the results. 3 in Figure7) always have values equal to zero. In the case MeshtestsweremadefortheCSDandCFDsimulations. of CSD simulations with shell-type elements the element is Figure6showsthecontrolplanesforaneurysm1.Plane triangular,soitonlyhasnodes1,2,and3thatareshownin 4 is a transverse plane of aneurysm 1 perpendicular to its Figure7. entranceareaandparalleltothedirectionofflowintheartery. The rupture point in saccular cerebral aneurysm is Planes1,2,and3aretheentrance,middle,andupperplanes locatedinthezonewithmaximumstressanddeformationor of aneurysm 1, and they are parallel to the entrance area of intheaneurysmfundus;forthisreasonwedefineandstudy aneurysm1.Thecontrolpointsforeachplanecorrespondto indetailstheresultsonthecontrolpointshowninFigure7 theelementsubjectedtothemaximumvalueofthevariable related with the wall shear stress. Averaged values on the inquestion. aneurysmsurfacedonotprovideusefulinformationtostudy ComputationalandMathematicalMethodsinMedicine 7 Control point on aneurysm 1 surface 3 2 1 4 Figure7:Controlpointinthefundusofaneurysm1. Table6:Meshdensityandcharacteristicsoftheelements. Element Geometry Nodes/element Elementsize(mm) Meshdensity(elements/mm3) 3Dsolid Tetrahedral 4 0.2 1400 3Dfluid Tetrahedral 4 0.33 110 Shell Triangular 3 0.33 25 thegrowthandruptureofsaccularaneurysms.Wereported 3.Results thelocalmaximumvaluesofseveralvariablesonaneurysm1 andthetemporalvariations. Thefollowingresultsanddiscussionsarebasedonaneurysm 1 due to this aneurysm that is the principal pathology in this patient. The aneurysm 2 is a part of the computational 2.5.NumericalMethod. TheCFD,FSI,andCSDmodelswere domain, ant it is located after the principal aneurysm, so solvedbyacommercialfinite-elementpackageADINA8.8.0. that the secondary aneurysm does not affect the aneurysm The Finite-Element Method (FEM) is used to solve the 1 or principal pathology. The results of the aneurysm 2 are governingequations.TheFEMdiscretizesthecomputational not discussed due to this an incipient geometrical change domain into finite elements that are interconnected by ele- of the artery, and in this stage of development it cannot be mentnodalpoints.ThefluiddomainemploysspecialFlow- classifiedasfullsaccularaneurysm.Thepatientisclinically Condition-Based-Interpolation(FCBI)tetrahedralelements. treatedduetothepresenceoftheaneurysm1orpathology; Wehaveusedtheformulationwithlargedisplacementsand thesecondaneurysmisinthiscasenotpartofthetreatment. small strains in the FSI calculation available in ADINA. Theaneurysm2isnotanalyzed. The unstructured grids were composed of tetrahedral with The differences between the FSI simulations and the four-nodeelementsinthefluidandfour-nodeisoparametric CFDandCSDsimulationswerestudiedwiththepurposeof elementsfortheshellstructureofthesolid. observingthedifferencesthataregeneratedbynotconsider- We have performed a sensitivity analysis of the mesh ingtheinteractionbetweenthesolidandthefluid. size in CFD and CSD simulations. Using a grid size with Theresultsareshownintwoways.Thefirstcorresponds 3 110elements/mm ,thedifferenceonpredictionsofmaximum to distribution graphics of simulation 12 only, because it wall shear stress at peak systole respect to a grid with was considered as the most complete. The second way of 130elements/mm3wereonly1%.FortheCSDsimulationswe showing the results is by means of temporal graphics of haveused1400elements/mm3,andthedifferencewithagrid significantvariablesonspecificcontrolpointsonaneurysm 3 1consideringseveralsimulations.Thesignificantvariablesin of1760elements/mm onmaximumdisplacementwasonly thefluidarepressure,wallshearstress,andvelocity,whilein 1%. The mesh density used in each case is summerized in thesolidtheyarethedisplacementofthewalloftheaneurysm Table6.Fortheintegrationofthistime-dependentproblem, 1, Von Mises effective stress, and first principal stress. The we used the full implicit Euler method with a time step of Δ𝑡 = 0.01s.Thetoleranceforalldegreesoffreedomwasset distribution graphics are shown at the times at which the significantvariablesaremaximumorminimum. to0.001. Figure8showsthepressuredistributionoverthegeom- Theworkstationusedtoperformthesimulationsisbased etryfor0.92(s)and1.2(s)forsimulation12.Inbothcasesit onanIntelXeondualcore64bitsprocessorof3.0Ghzclock canbeseenthatthepressuredropsinthedirectionoftheflow. speed,8.0GbRAMmemory.ThesimulationtimefortheFSI Thepressuredropis∼10(kPa)duringsystole.Thepressureon case based on 2 pulsatile flow cycles was around 29CPU aneurysmisconstant. hours. 8 ComputationalandMathematicalMethodsinMedicine Pressure Pressure RST calc RST calc Time2 Time2.28 12900 24667 12600 23333 12300 22000 12000 20667 11700 19333 11400 18000 11100 16667 Maximum Maximum 12972 24992 EG1, EL145793, IPT111 EG1, EL119478, IPT111 Minimum Minimum 10935 15743 EG1, EL36742, IPT11 EG1, EL137734, IPT 111 (a) (b) Figure8:Simulation12.Pressuredistributioninthecompletegeometryduringdiastole(0.89(s))ontheleftandduringsystole(1.16(s))on theright. ×104 1isoneorderofmagnitudelowerthanthemaximumvelocity Max an. 1 3 attheentrancetothisaneurysm. Thetemporalevolutionofthevelocityintheaneurysm1 2.5 inthreeplanesandinthecontrolpointisshowninFigure12; theeffectsofthemodelareveryimportantinthemagnitude 2 a) ofthevelocity.ThedifferencesbetweenCFDsimulation1and P Pressure ( 1.51 dFiSaIsFstoiimgleuuralenat1di3osnsyhssot1o0wl,es1i1tn,h1et2hw,eaancllodsm1h3peaalerrteesrtgreeelesovsmadneittsr.tryi.bIuttiisosneednurtihnagt bothaneurysmspresentlowerwallshearstresscomparedto 0.5 the rest of the geometry. Figure14 shows in detail the wall shearstressinaneurysm1withothercolormapranges.The 0 greatest wall shear stress is concentrated on the wall where 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 thebloodflowenterstheaneurysm.Thetemporalevolution Time (s) ofwallshearstressatthecontrolpointofaneurysm1isshown Lin O-W M.R. inFigure15;theeffectsofthemodelareveryimportantinthe Linear FL wallshearstress.TheFSIsimulations12and13usingMooney- M.R. O-W Rivlin show similar values of wall shear stress, except at systole,andtheCFDsimulation1showslowwallsheartstress. Figure 9: Temporal evolution of the maximum pressure in Figure16 shows the displacement distribution for the aneurysm1forsimulation1(FL),simulation10(linear),simulation wall of the geometry during systole. It can be seen that the 11(LinO-W),simulation12(M.R),andsimulation13(M.RO-W). maximumdisplacementoccursontheleftsideofaneurysm1 withrespecttotheentrance-outletdirectionofthebloodflow. Themaximumdisplacementis4.1(mm),whichisimportant The temporal variation of pressure shown in Figure9 consideringthesizeoftheaneurysm1. shows that the differences on pressure between the CFD The temporal evolution of maximum displacement in simulation 1 and FSI simulations 10, 11, 12, and 13 are low. aneurysm1forCSDsimulations2,5,8,and9andFSIsimula- Figure10 shows the velocity distribution for the transverse tions10,11,12,and13isshowninFigure17;theCSDpredicts andentrance(plane1)controlplanes,whileFigure11shows lowerwalldisplacementscomparedwiththeFSIresults. themiddle(plane2)andupper(plane3)planesofaneurysm Figure18 shows the distribution of effective Von Mises 1duringsystole.Inthetransverseplane(Figure10)itisseen stress on the wall of the artery and of aneurysm 1. The how the blood enters aneurysm 1 and goes to the left side high stress zone occurs near the dome of aneurysm 1. In of the wall due to the direction of the flow. In the entrance aneurysm 1 the maximum stress occurs in the same zone (Figure10), middle and upper (Figure11) planes, it is seen as the maximum displacement. The overall maximum is that the flow loses velocity as it starts recirculating around 100(kPa) higher than the maximum stress in aneurysm 1, aneurysm1.Themaximumvelocityattheupperofaneurysm whichis713(kPa). ComputationalandMathematicalMethodsinMedicine 9 Velocity Velocity magnitude magnitude Time2.28 Time2.28 0.39 0.65 0.33 0.55 0.27 0.45 0.21 0.35 0.15 0.25 0.09 0.15 0.03 0.05 Maximum Maximum 0.4322 0.6946 Node44854(0.4346) Node40391(0.6743) Minimum Minimum 0.000928 0.0002415 Node278(0.0009467) Node14056(0.0002373) (a) (b) Figure10:Simulation12.Distributionofvelocityatthetransversecontrol(left)andentranceplanes(right)foraneurysm1atpeaksystole (1.16(s)). Velocity Velocity magnitude magnitude Time2.28 Time2.28 0.2925 0.08667 0.2475 0.07333 0.2025 0.06 0.1575 0.04667 0.1125 0.03333 0.0675 0.02 0.0225 0.00667 Maximum Maximum 0.3061 0.09558 Node50380(0.3033) Node37486(0.09408) Minimum Minimum 0.0002972 0.001252 Node18849(0.0003648) Node17228(0.001271) (a) (b) Figure11:Simulation12.Distributionofthevelocityinthemiddle(left)andupper(right)controlplanesforaneurysm1atpeaksystole (1.16(s)). The temporal evolution of the effective maximum Von principalmaximumstressisconcentratedcoincideswiththe Misesstressinaneurysm1forCSDsimulations2,5,8,and areaonwhichthemaximumeffectiveVonMisesstressand 9andFSIsimulations10,11,12,and13isshowninFigure19; themaximumdisplacementareconcentrated. theCSDpredictslowerVonMisesstresscomparedwiththe The temporal evolution of the first principal maximum resultsofFSImodelswithMoney-Rivlin. stressinaneurysm1forCSDsimulations2,5,8,and9and Figure20 shows the distribution of the first principal FSI simulations 10, 11, 12, and 13 is shown in Figure21; the stress on the wall of the artery and of aneurysm 1 during CSDpredictssimilarstresscomparedwiththeresultsofFSI systole.Again,themaximumstressforthewholegeometry modelsexceptforthesimulation9. occurs in the neck of aneurysm 1 and is 150(kPa) higher Figure22 shows the first principal stretching for the thanthefirstprincipalmaximumstressofaneurysm1,which geometry and aneurysm 1 under systole. For the geometry is 725(kPa). For aneurysm 1 the area on which the first the maximum stretching is concentrated in the neck of 10 ComputationalandMathematicalMethodsinMedicine 0.8 0.35 0.7 0.3 0.6 m/s) 0.5 m/s) 00.2.25 d ( 0.4 d ( pee 0.3 pee 0.15 S S 0.1 0.2 0.1 0.05 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Time (s) Time (s) Lin O-W M.R. Lin O-W M.R. Lin FL Lin FL M.R. O-W M.R. O-W (a) Plane1 (b) Plane2 0.16 0.045 0.14 0.04 0.12 0.035 m/s) 0.1 m/s) 00.0.0235 d ( 0.08 d ( 0.02 e e e 0.06 e p p 0.015 S S 0.04 0.01 0.02 0.005 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Time (s) Time (s) Lin O-W M.R. Lin O-W M.R. Lin FL Lin FL M.R. O-W M.R. O-W (c) Plane3 (d) ControlPoint Figure12:Temporalevolutionofvelocityinaneurysm1intheentranceplane(a),middleplane(b),upperplane(c),andcontrolpoint(d) forsimulation1(FL),simulation10(Lin),simulation11(LinO-W),simulation12(M.R),andsimulation13(M.RO-W). Smoothed max Smoothed max shear stress shear stress RST calc RST calc Time2 Time2.28 14 32.5 12 27.5 10 22.5 8 17.5 6 12.5 4 7.5 2 2.5 Maximum Maximum 15.47 35.78 Node7591 Node12682 Minimum Minimum 0.0009514 0.0008122 Node137 Node137 (a) (b) Figure13:Simulation12.Distributionofwallshearstressduringdiastoleontheleftandsystoleontheright.
Description: