ebook img

Fluid Mechanics of Viscoplasticity PDF

405 Pages·2022·6.943 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fluid Mechanics of Viscoplasticity

Raja R. Huilgol Georgios C. Georgiou Fluid Mechanics of Viscoplasticity Second Edition Fluid Mechanics of Viscoplasticity · Raja R. Huilgol Georgios C. Georgiou Fluid Mechanics of Viscoplasticity Second Edition RajaR.Huilgol GeorgiosC.Georgiou CollegeofScienceandEngineering DepartmentofMathematicsandStatistics FlindersUniversity UniversityofCyprus Adelaide,SA,Australia Nicosia,Cyprus ISBN 978-3-030-98502-8 ISBN 978-3-030-98503-5 (eBook) https://doi.org/10.1007/978-3-030-98503-5 1stedition:©Springer-VerlagBerlinHeidelberg2015 2ndedition:©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringer NatureSwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland DedicatedtoLordGanesha and MusePolyhymnia Preface In the seven years since the first edition appeared, several significant additions to model the flows of viscoplastic fluids have occurred. In this volume, these novel aspectsareincorporated. Specifically,theparticlevelocitybasedlatticeBoltzmannmethoddemonstrates thatfifteenfictitiousparticlesatapoint,movinginspecifieddirectionswithallocated speeds and satisfying a set of evolution equations, produce Cauchy’s equations of continuummechanicsforallfluidstowithinanapproximation.Anothersetofseven particles,withcorrespondingevolutionequations,delivertheenergyequation.Since thenumericalmodellingoftheseevolutionequationscanbeachievedthroughfinite differences, the computational time is reduced significantly when compared with finiteelementmethods.Importantly,thereisnolossofaccuracyeither.Therelevant equationsarederivedinChap.3and,inChap.10,theseequationsareusedtomodel the flow of a Bingham fluid in a pipe of square cross-section, and the thermally inducedlid-drivenflowinacavity. NumerousanalyticalsolutionstotheflowsofHerschel-Bulkleyfluidsareincluded inthismonograph,alongwiththeuseoftheLambertWfunctiontostudysuchflows, usingthePapanastasioumodel.Inaddition,theantiplaneshearflow,thehodograph transformation,effectsofwallslip,andflowsofmaterialswithpressuredependent rheologicalparametersarealsoexaminedindetailinChap.5. In Chap. 7, the lubrication paradox is re-examined and an integral equation approachishighlightedtocircumventthisparadoxintheflowsofaHerschel-Bulkley fluid.Variousslumptestsarealsodiscussed. It has been found recently that the Cheeger set of the cross-section of a pipe determinestheminimumpressuredropperunitlengthtoinitiatethesteadyflowofa Binghamfluid.Equally,theCheegersetofthecross-sectiondeterminesthesettling ofrigidbodiesinBinghamfluids.ThesenewdevelopmentsappearinChap.9. Finally,inChap.10,apartfrommodellingtheequationsintwoseparateflowsof BinghamfluidsderivedfromtheparticlevelocitybasedlatticeBoltzmannmethod, ashootingmethodisemployedtomodeltheflowofBinghamandHerschel-Bulkley fluidinanannulus.Thisapproach,whichisfasterthanthatutilisingthefiniteelement method,canbeextendedtohelicalflowsaswell. vii viii Preface Itistobeexpectedthatthematerialfromtheearliereditionisretained,although manyimportantadditionsandtheirexpositioncanbefoundhere. Wehopethatourjointventureisofsufficientbreadthanddepthtoconvincethe readertoembarkonavoyageofscientificdiscovery. Adelaide,Australia RajaR.Huilgol Nicosia,Cyprus GeorgiosC.Georgiou Acknowledgements MuchofthematerialinChaps.7–10ofthismonographisderivedfromtheresearch funded by the Australian Research Council and Moldflow Pty. Ltd. under the LinkageGrantsduring2005–2009awardedtoRajaHuilgol.TheworkofGholam- reza Kefayati reproduced in Chaps. 3 and 10 was supported by an International PostgraduateResearchFellowshipfromFlindersUniversity,Adelaide,from2013to 2016. Figures 6.1–6.4, 7.1, 7.2, 9.2–9.6, 10.1–10.8, as well as Tables 3.1, 10.2–10.8, havebeenreproducedfromthefollowingpublications: 1. Title:JournalofNon-NewtonianFluidMechanics.Vol.Number:123.Authors: I.A.FrigaardandD.P.Ryan.Titleofarticle:Flowofavisco-plasticfluidina channelofslowlyvaryingwidth.PageNos:67–83.CopyrightElsevier(2004). 2. Title:JournalofNon-NewtonianFluidMechanics.Vol.Number:136.Author: R.R.Huilgol.Titleofarticle:Asystematicproceduretodeterminetheminimum pressure gradient required for the flow of viscoplastic fluids in pipes of symmetriccross-section.PageNos:140–146.CopyrightElsevier(2006). 3. Title: International Journal of Heat and Mass Transfer. Vol. Number: 103. Authors:G.H.R.KefayatiandR.R.Huilgol.Titleofarticle:LatticeBoltzmann MethodforsimulationofmixedconvectionofaBinghamfluidinalid-driven cavity.PageNos:725–743.CopyrightElsevier(2016). 4. Title:EuropeanJournalofMechanicsB/Fluids.Vol.Number:65.Authors:G. H.R.KefayatiandR.R.Huilgol.Titleofarticle:LatticeBoltzmannMethodfor simulationofthesteadyflowofaBinghamfluidinapipeofsquarecross-section. PageNos:412–422.CopyrightElsevier(2017). 5. Title:JournalofNon-NewtonianFluidMechanics.Vol.Number:251.Authors: R. R. Huilgol and G. H. R. Kefayati. Title of article: A particle distribution functionapproachtotheequationsofcontinuummechanicsinCartesian,cylin- drical and spherical coordinates: Newtonian and non-Newtonian fluids. Page Nos:119-131.CopyrightElsevier(2018). ix x Acknowledgements 6. Title:JournalofNon-NewtonianFluidMechanics.Vol.Number:265.Authors: R. R. Huilgol, A. N. Alexandrou and G. C. Georgiou. Title of article: Start- up plane Poiseuille flow of a Bingham fluid. Page Nos: 133–139. Copyright Elsevier(2019). Contents 1 TheBasicFeaturesofViscoplasticity ............................ 1 1.1 BinghamFluidatRestinaChannel ......................... 1 1.2 SignoftheShearStress ................................... 2 1.3 CriticalPressureDropandtheConstitutiveRelation ........... 3 1.4 TheSolution ............................................. 5 1.5 FlowRate ............................................... 6 1.6 InherentNonlinearity ..................................... 7 1.7 Non-dimensionalisation ................................... 7 1.8 TheBuckinghamEquation ................................ 10 1.9 FreeBoundaryProblems .................................. 12 1.10 TheMinimiserandtheVariationalInequality ................. 15 1.11 EffectsofWallSlip ....................................... 17 1.12 ExperimentalEvidenceandModelling ...................... 19 References .................................................... 23 2 KinematicsofFluidFlow ...................................... 25 2.1 KinematicalPreliminaries ................................. 26 2.2 RelationBetweentheVelocityandDeformationGradients ..... 28 2.3 RigidMotion ............................................ 30 2.4 PolarDecomposition,SpinandStretching ................... 31 2.5 SteadyVelocityFieldsandTheirRivlin-EricksenTensors ...... 33 2.6 AppendixA:Divergence,Curl,Rivlin-EricksenTensor andSpinTensor .......................................... 35 References .................................................... 37 3 FundamentalEquations:ContinuumMechanicsandLattice BoltzmannModels ............................................ 39 3.1 Introduction ............................................. 39 3.2 ConservationofMass ..................................... 41 3.3 Cauchy’sFirstLawofMotion .............................. 41 3.4 Cauchy’sSecondLawofMotion ........................... 43 3.5 ConservationofEnergy ................................... 45 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.