ebook img

Fluid Mechanics in Channel, Pipe and Aerodynamic Design Geometries 2 Volume 3 PDF

308 Pages·2018·20.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fluid Mechanics in Channel, Pipe and Aerodynamic Design Geometries 2 Volume 3

Fluid Mechanics in Channel, Pipe and Aerodynamic Design Geometries 2 ...To our family Depy Andreas Nikos Giannis Lilian …as without their support none of this would have ever been possible for us Engineering, Energy and Architecture Set coordinated by Lazaros E. Mavromatidis Volume 3 Fluid Mechanics in Channel, Pipe and Aerodynamic Design Geometries 2 Christina G. Georgantopoulou George A. Georgantopoulos First published 2018 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2018 The rights of Christina G. Georgantopoulou and George A. Georgantopoulos to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2018932756 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-140-6 Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Chapter 1. Pipe Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Calculation of pipe networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Problem-solving methodology for pipe networks . . . . . . . . . . . . . . . . . 10 1.4. Overall approach for the network calculation . . . . . . . . . . . . . . . . . . . 12 1.5. The Hazen–Williams equation for network analysis . . . . . . . . . . . . . . . 13 1.6. Hazen–Williams and Darcy–Weisbach identity . . . . . . . . . . . . . . . . . . 15 1.7. Hardy–Cross method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.8. Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.9. Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.10. Problems with solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.11. Problems to be solved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Chapter 2. Open Channel Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.2. Non-dimensional parameters in open channels . . . . . . . . . . . . . . . . . . 58 2.3. Open channel types of flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.4. Open channels’ geometrical shapes . . . . . . . . . . . . . . . . . . . . . . . . 61 2.4.1. Channels of rectangular cross-sectional area . . . . . . . . . . . . . . . . . 61 2.4.2. Channels of trapezoidal cross-sectional area . . . . . . . . . . . . . . . . . 62 2.4.3. Channels of circular cross-sectional area . . . . . . . . . . . . . . . . . . . 63 2.5. The hydraulic jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.6. Calculation of the depth flow after the hydraulic jump . . . . . . . . . . . . . . 65 2.7. Velocity distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.8. Velocity distribution at the vertical level . . . . . . . . . . . . . . . . . . . . . 68 2.9. Uniform flow in open channel equations – Chezy type . . . . . . . . . . . . . 70 vi Fluid Mechanics 2 2.10. Best hydraulic cross-sectional area . . . . . . . . . . . . . . . . . . . . . . . . 75 2.11. Specific flow energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.12. Channels of rectangular cross-sectional area . . . . . . . . . . . . . . . . . . . 80 2.13. Open channels’ more adequate cross-sectional areas . . . . . . . . . . . . . . 83 2.13.1. Rectangular cross-sectional area . . . . . . . . . . . . . . . . . . . . . . . 83 2.13.2. Trapezoidal cross-sectional area . . . . . . . . . . . . . . . . . . . . . . . 85 2.14. Non-uniform flow in open channels . . . . . . . . . . . . . . . . . . . . . . . 88 2.15. Channels of non-rectangular cross-section area . . . . . . . . . . . . . . . . . 90 2.16. Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 2.16.1. Channels of rectangular cross-sectional area formulae . . . . . . . . . . . 93 2.16.2. Channels of trapezoidal cross-section formulae . . . . . . . . . . . . . . 93 2.16.3. Channels of circular cross-sectional area formulae . . . . . . . . . . . . . 94 2.16.4. Channels of rectangular cross-sectional area formulae . . . . . . . . . . . 99 2.16.5. Channels of non-rectangular cross-sectional area formulae . . . . . . . . 100 2.17. Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 2.18. Problems with solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 2.19. Problems to be solved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Chapter 3. Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.2. Laminar incompressible boundary layer . . . . . . . . . . . . . . . . . . . . . . 120 3.3. Characteristic values of the boundary layer . . . . . . . . . . . . . . . . . . . . 125 3.3.1. Thickness δ of the boundary layer . . . . . . . . . . . . . . . . . . . . . . . 125 3.3.2. The thickness displacement δ′ . . . . . . . . . . . . . . . . . . . . . . . . 126 1 3.4. Flow types in the boundary layer . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.5. Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.6. Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 3.7. Problems with solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 3.8. Problems to be solved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Chapter 4. Flow Around Solid Bodies . . . . . . . . . . . . . . . . . . . . . . . . 147 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4.2. Geometrical characteristics of an airfoil . . . . . . . . . . . . . . . . . . . . . . 148 4.3. Kutta–Joukowski equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4.4. Aerodynamic paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 4.5. Pressure distribution in an airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.6. Lift curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.7. Drag force and drag coefficient curve . . . . . . . . . . . . . . . . . . . . . . . 158 4.7.1. Drag of skin friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.7.2. Form drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 4.7.3. Induced drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Contents vii 4.8. Parameters that influence the drag coefficient C . . . . . . . . . . . . . . . . . 163 D 4.8.1. Dependence of C on the body’s shape . . . . . . . . . . . . . . . . . . . . 163 D 4.8.2. Dependence of C on relative roughness . . . . . . . . . . . . . . . . . . . 165 D 4.8.3. Dependence of C on the Reynolds number . . . . . . . . . . . . . . . . . 170 D 4.9. External flow around industrial solid bodies . . . . . . . . . . . . . . . . . . . 177 4.9.1. Car’s motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 4.9.2. Surface vessel’s motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 4.9.3. Wind flow in ground constructions . . . . . . . . . . . . . . . . . . . . . . 179 4.9.4. Airplane’s motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 4.10. Drag in fluid drops and gas bubbles in creeping flow . . . . . . . . . . . . . . 190 4.11. Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 4.12. Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 4.13. Problems with solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 4.14. Problems to be solved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Appendix 1. Symbols and Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Appendix 2. Tables and Diagrams of Natural Values . . . . . . . . . . . . . . 219 Appendix 3. Symbols and Basic Conversion Factors . . . . . . . . . . . . . . 237 Appendix 4. International Standard Atmosphere, SI Units . . . . . . . . . . 239 Appendix 5. International Standard Atmosphere, in BS . . . . . . . . . . . . 251 Appendix 6. NACA Airfoils’ Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 259 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Description:
Fluid mechanics is an important scientific field with various industrial applications for flows or energy consumption and efficiency issues. This book has as main aim to be a textbook of applied knowledge in real fluids as well as to the Hydraulic systems components and operation, with emphasis to t
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.