% ', -<,4. FLUID-FLUIDINTERFACESANDTHEEFFECTOFINTERFACIALPHENOMENA ONCHEMICALTRANSPORTINPOROUSMEDIAWITHMULTIPLEFLUIDS , By HEONKIKIM ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA DECEMBER1998 ACKNOWLEDGMENTS Iwouldliketoexpressmydeepgratitudetomyadvisors,DrsMichaelD.Annable andP. SureshC.Rao,fortheirencouragement,supportanddirectionthroughoutthis research. IwouldliketothankDrsWilliamR.Wise,PaulA.Chadik,KirkHatfieldandKurt D.Pennellfortheirhelpfulcommentsandvaluablesuggestionsduringpastthreeyears. Iwouldalsoliketoextendmydeepappreciationtomycolleagues,JimJawitz,Randy andGloriaSillan,ClaireShukla,ClaytonClark,andDr.Chenwhohavewatchedthe progressofthisresearchandwerealwayswillingtotakepartindiscussionsforbetter understandingofcontaminanthydrology. IwouldespeciallythankMs.IrenePoyerforhergreatsupportinthelab. Without herhelp,thisworkwouldnothavebeenachieved. ThesupportfromDr.ChangWhanKimatYonseiUniversityinKoreasinceasearly as1987ineveryaspect,isgreatlyappreciated. Myveryspecialthanksgotomywife,Hea-young,Ryu,andmydaughter,Jeong-Yon, whoselove,encouragementandperseverancehavegivenmestrengthduringmygraduate studies. Finally,consistentsupportfrombothofmyparentsandparents-in-law,mentallyas wellasfinancially,isgreatlyappreciated. ii TABLEOFCONTENTS ACKNOWLEDGMENTS ii LISTOFFIGURES vi ABSTRACT x CHAPTERS 1. INTRODUCTION 1 ResearchObjectivesandOrganization 3 SurfaceExcessofOrganicChemicals 5 ModelsforInterfacialAreaEstimation 8 ThermodynamicModels 8 Semi-EmpiricalModels 10 IdealPorousSystem-PendularRingModel 14 MassTransferModel 16 2. INFLUENCEOFAIR-WATERINTERFACIALADSORPTIONANDGAS- PHASEPARTITIONINGONTHETRANSPORTOFORGANIC CHEMICALSINUNSATURATEDPOROUSMEDIA 19 Introduction 19 TheoreticalBackground 21 MaterialsandMethods 25 Materials 25 MiscibleDisplacementExperiments 26 SurfaceTensionMeasurements 28 ResultsandDiscussion 29 RetardationofChemicals 29 EstimationofAir-WaterInterfacialArea 33 Summary 34 iii 3. GASEOUSTRACERAPPLICATIONFORTHEESTIMATIONOFAIR- WATERINTERFACIALAREAS,INTERFACIALMOBILITY,AND WATERCONTENTSINPARTIALLYSATURATEDPOROUSMEDIA 44 Introduction 44 MaterialsandMethods 47 DataAnalysis 49 ResultsandDiscussion 50 Water-PartitioningTracer 50 InterfacialTracer 51 Summary 56 4. EFFECTSOFWATER-PARTITIONINGANDAIR-WATERINTERFACIAL ADSORPTIONONTHEGASEOUSTRANSPORTOFORGANIC CONTAMINANTSINUNSATURATEDPOROUSMEDIA 65 Introduction 65 TheoreticalBackground 67 MaterialsandMethods 68 Materials 68 MiscibleDisplacementExperiments 69 ResultsandDiscussion 71 Summary 75 5. EXPERIMENTALEVALUATIONOFTHEQUANTITATIVEVALIDITY OFINTERFACIALTRACERS 85 Introduction g5 TheoreticalBackground 87 SurfactantAdsorptionattheNAPL-WaterInterface 87 InterfacialTracerDisplacementExperiment-InterfacialArea Calculation 89 ComparisonofIsotherms 90 MaterialsandMethods 91 Materials 91 ColumnDisplacementExperiments 92 InterfacialTensionMeasurement 93 ResultsandDiscussion 94 NAPL-WaterInterfacialArea 94 InterfacialAdsorptionIsotherm 97 Summary 99 iv 6. TRIAMNPSAPCOTROTFONFOINN-TEEQRUFIALCIIBARLIUAMNDSOWRAPTTEIRO-NPAARNTDINTOINONLIINNGEATRRACERS: ADSORPTIONISOTHERM 107 Introduction 107 TheoreticalBackground 109 Two-RegionModel 109 Two-SiteModel 112 NonlinearIsotherm 113 TemporalMomentAnalysis 114 Experimental 116 ResultsandDiscussion 116 GaseousTransport 116 AqueousTransport 122 EffectofPulseSizeontheReteirdationFactor 125 Summary 127 7. CONCLUSIONSANDRECOMMENDATIONS 144 Conclusions 144 Recommendations 147 APPENDIX 149 REFERENCES 152 BIOGRAPHICALSKETCH 159 V LISTOFFIGURES Figure 1-1 ThelogA^,„,-log relationshipfororganiccompounds;K,„-surface adsorptioncoefficient(watertoair-waterinterface),centimeter;K^,„-octanol waterpartitioningcoefficient(dimensionless);datafromHoffetal.(1993b), Valsaraj(1994) 18 2-1 Detailedcolumnconfigurationfortheunsaturatedcolumnexperiments 37 2-2 Experimentalset-upforunsaturatedcolumnexperiments 38 2-3 Breakthroughcurvesforbromideandfouralcoholsatthreedifferentwater contents 39 2-4 Breakthroughcurvesforthetransportofaromaticcompoundsandbromide; Cl-chloro:bnz-benzene:eth-ethyl:pnl-phenol 40 2-5 Effectofwatersaturationonthetotalretardationfactors(R,)ofalcohols(a), andaromaticcompounds(b). Alltheretardationsources(soilsorption,gaseous partitioning,andair-waterinterfacialadsorption)weretakenintoaccountfor thepredictedcurves(solidlines);nonanol,m-alcoholmixturesolutions: s-singlecomponentsolution;notationforaromaticcompoundsisthesame asinFig.2-4 41 C 2-6 Measuredsurfacetensionsof«-octanoland«-nonanol; representsthe influentalcoholconcentrationusedduringthecolumnexperiments 42 2-7 Correlationofthespecificair-waterinterfacialareas(a)calculatedfromthe retardationof«-octanol(inmixture)and«-nonanol(inmixture(m)andsingle- component solution(s))withthedegreeofwatersaturation{SJ;anempirical curvefromSDBSdisplacementexperimentsbyKimetal.(1997)wereoverlaid forcomparison;verticallinesrepresentdatafromoneexperimentwithasuite ofalcohols 43 vi 3-1 Experimentalsetupforgaseousinterfacialandwater-partitioningtracer experiments 59 3-2 Breakthroughcurvesofthewater-partitioningtracersatdifferentwater saturations;tracerconcentrationwasnormalizedsothatthetotalmassof appliedtracersforalltheexperimentsatdifferentwatersaturationswas reducedto0.1porevolume 60 3-3 Themeasuredvolumetricwatercontentwithrespecttotheactualwatercontent estimatedbycolumnweight:solidline-ideal1:1line 61 3-4 Breakthroughcurvesofthegaseousinterfacialtracer(«-decane)atdifferent watersaturations;tracerconcentrationwasnormalizedsothatthetotalmass of«-decaneforalltheexperimentsatdifferentwatersaturationswasreducedto 0.1porevolume;insetgraphforthemethaneBTCsattwodifferentwater saturations 62 3-5 Measuredspecificair-waterinterfacialareas(a,)usinggaseousandaqueous interfacialtracers;SDBS(Kim,etal.,1997):alcohols(fromChap.2): regressioncurve(n-decane):a,=-196.0InS^.-58.9(r^=0.978) 63 3-6 Theratioofinterfacialvelocitytothebulkpore-watervelocity(a)withthe observedsodiumdodecylbenzenesulfonate(SDBS)retardationfactors (Kimetal.,1997)andthehypotheticalretardationfactorsofSDBSestimated basedonthespecificair-waterinterfacialareas(a,) measuredbygaseous interfacialtracer(«-decane)experiments 64 4-1 Thebreakthroughcurvesofn-nonaneandchlorobenzeneatdifferentwater saturations(medium:DoverAFBsoil) 78 4-2 Estimatedspecificair-waterinterfacialareasofthecolumnspackedwith DoverAFBsoilandacleansandinwatersaturationrangeof5-55% 79 4-3 ObservedandpredictedtotalretardationfactorsofVOCsforDoverAFBsoil. Thecomponents{^)ofpredictedtotalretardationfactorofchlorobenzenewere shownwiththeobservedtotalretardationfactor 80 4-4 Thefractionsofpredictedtotalretardationfactorsof/^-xylenefortheDover AFBsoilandcleansand. Thefractionalretardationfactors(f)werenormalized withrespecttothepredictedtotalretardationfactors,whichwerereduced tounity 81 vii 4-5 Thefractionif,)ofpredictedtotalretardationfactorsofinterfacial(air-water) adsorptionforVOCsusedinthisstudy 82 4-6 ComparisonofVOCbreakthroughcurvesatwatersaturationof0.117:dual- mixtureinjection;solo-singlecomponentinjection 83 4-7 Breakthroughcurvesof«-heptaneatwatersaturationof0.146withdifferent injectionvolumes;thevolumeof«-heptaneandairmixturetakenfromthe headspaceinthesamplepreparationvial,usedastheinputpulse 84 5-1 Schematicdiagramoftheexperimentalset-up 101 5-2 InterfacialtensionsbetweenNAPL-surfactantaqueoussolutions 102 5-3 Breakthroughcurvesofinterfacialtracers:(a)SDBS(CMC=2.2mM), «-decanecolumn;(b)CPC(CMC=0.9mM),«-decanecolumn;(c)SDBS, PCEcolumn 103 5-4 RetardationfactorsofSDBSandCPCasafunctionoftracerinfluent concentrationsfromn-decaneglassbeadcolumnexperiments 105 5-5 InterfacialadsorptionisothermsofSDBSandCPCcalculatedfrominterfacial tensiondataandtheGibbsequation(solidline),andcolumn(«-decane) experimentdata 106 6-1 Breakthroughcurvesoftheinterfacialtracers;DoverAFBsoil,watersaturation 0.15 132 6-2 Breakthroughcurvesofmethaneatdifferentpore-gasvelocities,sandcolumn, watersaturation0.31 133 6-3 Thenormalized,temporal,centralmomentsofvolatileorganicchemicalswith respecttotheretardationfactor 134 6-4 Normalizedbreakthroughcurvesofmethylenechloride(gaseouswater- partitioningtracer)atdifferentwatercontents,sand 135 6-5 Thechangeofthenormalized,temporal,centralmomentsofmethylenechloride (water-partitioningtracer)withvolumetricwatercontentchange 136 6-6 FittedBTCsofmethylenechlorideusing2-sitemodel;squares-observeddata, solidline-fitting;(a)watercontent0.070,(b)watercontent0.141,(c)water content0.184 137 viii sir— 6-7 Thebreakthroughcurvesoftracers:(a)bromide,(b)CPC0.0596mM,(c)CPC 0.199 mM;porewatervelocity0.9cm/min.;rectangle-frontsideofBTC, closedtriangle-backsideofBTC,opentriangle-invertedbacksideofBTC. 138 6-8 NormalizedbreakthroughcurvesofCPCwithdifferentinputconcentrations, glassbeadcolumn,coatedwithn-decane;datafromChap.5 139 6-9 TheadsorptionisothermofCPCatthe«-decane-waterinterfaceat22°C(a); andregressionresultusingFreundlichisothermmodel(Eq.6-27)fortheCPC concentrationuptothesaturationpoint(CPCconc.=5xl0"^mol/cm^)(b): squares-observeddata;solidline-regression 140 6-10 BreakthroughcurvesofCPC:(a)observed,C„=0.056mM,(b)simulatedBTC usingequilibrium,nonlinearisotherm,2-sitemodel,A^=0.353(Freundlich isothermmodel),(c)simulatedBTCusingequilibrium,linearisothermmodel, (d)fittedBTCusingnon-equilibrium,nonlinearisotherm(iV=0.353), 2-sitemodel,/?=0.52,<y=1.33:allBTCshavethesameretardationfactorof 3.21 141 6-11 BreakthroughcurvesofCPC;thefittingparameters(/?andco)forthefrontal sideoftheBTCwereusedtopredictthebacksideofBTC 142 6-12 BreakthroughcurvesofCPC;thesizeofinputpulseisnotcorrected; influentconcentrationsareshowninTable6-3 143 ix AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy FLUID-FLUIDINTERFACESANDTHEEFFECTOFINTERFACIALPHENOMENA ONCHEMICALTRANSPORTINPOROUSMEDIAWITHMULTIPLEFLUIDS By HEONKIKIM December1998 Chairman:MichaelD.Annable Cochairman:P.SureshC.Rao MajorDepartment:EnvironmentalEngineeringSciences Thephysicalmorphologyandquantityoftheinterfacesbetweenimmisciblefluids inporousmediaisofgreatinterestinsubsurfacecontaminanthydrology. Althoughthe quantityoffluid-fluidinterfacialareasinporousmediacontaminatedwithwater-immiscible fluidshasbeenrecognizedasacontrollingfactorofmanyphysico-chemicalprocesses, experimentaltechniquestomeasurethisquantityhavenotbeenavailableuntilaninterfacial tracermethodwasdevelopedin1995. Theobjectivesofthisstudyare(1)tovalidatethe interfacialtracertechniqueinbothaqueousandgaseousapplications,(2)tocharacterizethe effectofinterfacialadsorptionoforganiccontaminantsatthefluid-fluidinterfacesontheir aqueousandgaseoustransport,(3)andtoinvestigatethenon-ideal behaviorofchemical X