Grundlehren der mathematischen Wissenschaften 345 ASeriesofComprehensiveStudiesinMathematics Serieseditors M.Berger P.delaHarpe F.Hirzebruch N.J. Hitchin L.Hörmander A.Kupiainen G.Lebeau F.-H. Lin S.Mori B.C.Ngô M.Ratner D.Serre N.J.A. Sloane A.M. Vershik M.Waldschmidt Editor-in-Chief A.Chenciner J.Coates S.R.S.Varadhan Forfurthervolumes: www.springer.com/series/138 Tomasz Komorowski (cid:2) Claudio Landim (cid:2) Stefano Olla Fluctuations in Markov Processes Time Symmetry and Martingale Approximation TomaszKomorowski ClaudioLandim InstituteofMathematics InstitutodeMatemática(IMPA) MariaCurie-SkłodowskaUniversity RiodeJaneiro,Brazil Lublin,Poland and and CNRSUMR6085 InstituteofMathematics UniversitédeRouen PolishAcademyofSciences Saint-Étienne-du-Rouvray,France Warsaw,Poland StefanoOlla CEREMADE,CNRSUMR7534 UniversitéParis-Dauphine Paris,France ISSN0072-7830 GrundlehrendermathematischenWissenschaften ISBN978-3-642-29879-0 ISBN978-3-642-29880-6(eBook) DOI10.1007/978-3-642-29880-6 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012943039 MathematicsSubjectClassification: 60F05,60J25,60K35,60K37,60H25,60G60,35B27,76M50 ©Springer-VerlagBerlinHeidelberg2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To Raghu Varadhan, a continuous source of inspiration Preface Instatisticalmechanicsasinmanyotherfields,diffusionphenomenamayarisefrom Markovian stochastic modeling. This has motivated, since the early investigations ofKolmogorovandDoeblin’sseminalpaper(Doeblin,1938),anincreasinginterest in central limit theorems for Markov processes. Doeblin made a close connection betweenthevalidityofsuchtheoremsandthetimemixingpropertiesoftheMarkov process.Suchmixingconditions,nowadayscalledDoeblin’sconditions,aresome- times difficult to verify. In particular many problems in statistical mechanics are intrinsically infinite dimensional, and in that case the Doeblin mixing assumption typicallydoesnothold. Inthe1960sGordin(1969)introducedanothermoreanalyticalapproach,based on martingale approximation of additive functionals of Markov processes. Con- sideraMarkovprocess{X ,t ≥0}withanergodicstationaryprobabilitymeasure t π(dx),andletV(x)beafunctiononthestatespaceoftheprocesswithmeanzero with respect to π. Let L be the generator of the corresponding Markovian semi- group Ptu(x)=Ex[u(X(cid:2)t)]. Then if u is a function in the domain of L, the pro- cess u(X )−u(X )− tLu(X )ds is a martingale. Solving the Poisson equation t 0 0 s (cid:2) Lu=V withanicefunctionuinthedomainofL,onecanexpress tV(X )dsasa 0 s martingaleplusaboundaryterm,andreducetheproblemtoprovingacentrallimit theorem for martingales. As we will explain in Chaps. 1 and 2, central limit theo- remsformartingalesrequiresonlyergodicityoftheprocessandaglobalcontrolof thecorrespondingquadraticvariation. Of course the possibility of inverting the generator L is related to the mixing properties of the process, but it permits to tailor the conditions to the particular function V we are studying. If L possesses a spectral gap, then the corresponding PoissonequationcanbesolvedforanyfunctionV withmeanzero. Howeverinmanyapplicationsinstatisticalmechanics,thegeneratorLdoesnot haveaspectralgap.Thetypicalinfinitedimensionalsituationdealswithadynamics thathasconservationlawsandthereisanentirefamilyofstationaryergodicmea- sures. The classical example is given by the problem of the macroscopic diffusive behaviorofataggedparticleinasystemofinteractingparticles.Thedynamicsof vii viii Preface theinteractingparticlesmayconservethedensityandeventuallysomeotherquan- tities. The problem of the tagged particle in exclusion processes (studied in detail in Part II of this book) motivated Kipnis and Varadhan to develop a general central limittheoremthatexploitsthetimesymmetriesoftheprocess.Theideainthearticle (Kipnisan(cid:2)dVaradhan,1986)canbesummarizedasfollows:theasymptoticvariance fort−1/2 tV(X )ds isgivenby 0 s (cid:3) ∞ (cid:4) (cid:5) σ2(V)=2 E V(X )V(X ) dt, π t 0 0 whereE istheexpectationwithrespecttothepathmeasureoftheprocessstarting π fromthestationarymeasureπ.Ifthemeasureistime-reversible,i.e.thegeneratorL isself-adjointinL2(π),thenE [V(X )V(X )]≥0forall t≥0andσ2(V)willbe π t 0 finite if this time correlation decays sufficiently fast. The condition σ2(V)<+∞ is much weaker than asking that V belongs to the range of L, and it translates to anintegrabilityconditiononthecorrespondingspectralmeasure(supportedonthe realline)aroundzerothatisrelativelyeasytoverify.Asimpleargumentusingthis spectral measure shows that the martingale approximation can be done using the resolventsolutionu =(λ−L)−1V,evenwhenV isoutsidetherangeofL.Inthe λ introductoryChap.1wewillexplainthisapproachindetailforasimpleexampleof areversible(discretetime)Markovchain. Some of the ideas discussed above were already present in the literature deal- ingwiththeproblemofhomogenizationofdiffusionsinstationaryergodicrandom environments (cf. Kozlov 1979; Papanicolaou and Varadhan 1981), but it is in the aforementioned work of Kipnis and Varadhan (1986) that the connection with re- versibility has been exploited fully and the finiteness of the variance σ2(V) has beenformulatedasasufficientconditionforthecentrallimittheoremsforreversible Markovprocesses. Lateronthetheoryhasbeenextendedtocertainclassesofnon-reversibleMarkov processes,i.e.Markovprocesseswithastationaryergodic(butnon-reversible)prob- ability measure π. When this measure is explicitly known, the generator can be decomposed as the sum of a symmetric and an anti-symmetric operator in L2(π), L=S+A.IfforasufficientlylargesetC,thatisacommoncoreofLandS,there existsafiniteconstantK suchthat (cid:6)(cid:3) (cid:7) (cid:3) (cid:3) 2 fLgdπ ≤K f(−S)f dπ g(−S)gdπ, f,g∈C then we say that L satisfies a sector condition. The name illustrates the fact that thespectrumofL,ingeneralasubsetofthecomplexplane,iscontainednowina conearoundthenegativerealstouchingtheimaginaryaxisonlyat0,wherethecon- stantK isthetangentofthecorrespondingsemiangleofthecone.Therearemany interesting examples of Markov processes that satisfy the sector condition: asym- metricexclusionprocesseswithnullaveragejumprate(studiedinSect.5.3),cyclic randomwalksinrandomenvironment(Sect.3.3),doublystochasticrandomwalks Preface ix inonedimension(Sect.3.6),diffusionswiththerandomgeneratorinadivergence form(Chap.9). Another class of processes where the theory can be extended is provided by Markov processes with normal generators L and their bounded perturbations (Sect. 2.7.5). This condition allows to deal with examples like random walks, or diffusionsintimedependentrandomenvironment(Sect.9.9). AfurtherextensionconcernsprocesseswherethegeneratorLsatisfiesagraded sector condition: this is the case where the spac(cid:8)e L2(π) can be decomposed into adirectsumof orthogonalsubspaces, L2(π)= A , and L satisfies asector n≥0 n condition on each subspace with a constant K eventually growing to infinity not n too fast (see Sect. 2.7.4 for the precise formulation of this condition). Examples includeasymmetricexclusionprocessesindimensiond≥3(Sect.5.5,thisexample motivatedtheextension),anddiffusionswithGaussiandrifts(Chap.12). Wealsopresentsomeexamplesthatgobeyondsectortypeconditions: • diffusions in divergence free fields with the stream matrix that is square inte- grable (i.e. finite Péclet number), can be dealt with by an approximation proce- dure(Chap.11); • doublystochasticrandomwalksinspace-mixingenvironmentindimension3or higher,whereanapproximationprocedurecanbeimplemented(Sect.3.5); • Ornstein–Uhlenbeck process in a random potential (position-velocity Langevin diffusion).Thisisaverydegeneratediffusion(noiseactingonlyonthevelocity), but time symmetry of the Gibbs measure can be exploited by changing sign of thevelocityinthereversedprocess(seeChap.13). Alltheseexamplesofthecentrallimittheoremforprocesseswiththegenerator notsatisfyinganysectorconditionexploitparticularfeaturesofthedynamics.What ismissingisageneraltheoremfornon-reversibleMarkovprocesses.Weexpected the validity of the central limit theorem for any Markov process with stationary, ergodic measure π and a function V such that (−S)−1/2V belongs to L2(π). We arenotawareofanycounterexamplestothisstatement. Description of the Content of This Book Part I concerns the general theory, and could be used as the base for a graduate course. Only some basic probability is required, in particular ergodic theorems and martingales. In the first chapter we exposethecentrallimittheoremforacountablestatespace,discretetime,reversible Markovchains.Thisisthemostelementary,non-trivialset-upwherewecanillus- trate the basic ideas without spending much time on technicalities. In Chap. 2 we developthetheoryforgeneralcontinuoustimeMarkovprocesses,andintroducethe varioussectorconditions.InChap.3weapplythetheorytorandomwalksinran- dom environment on Zd, that are nice and relatively simple, although at the same timequitenon-trivialexamplesofthegeneraltheory.Weconcludethispartofthe bookwithChap.4thatcontainsestimatesandvariationalformulasfortheasymp- totic variance σ2(V), which turn out to be quite useful in applications. In fact in some examples the central limit theorem follows by the applicationof the general theory,whileprovingstrictpositivityofthevariancerequiressomeextraeffort. x Preface PartIIiscompletelydedicatedtocentrallimittheoremsforexclusionprocesses, theproblemwhichmotivatedthedevelopmentofthetheorypresentedinthisbook. InChap.5,weintroducethesimpleexclusionprocess,provethemainproperties ofitsgenerator,andexaminecentrallimittheoremsforadditivefunctionals.Inthe case where the jump rates of the particles are symmetric, this result is a straight- forwardconsequenceofthefirstpartofthebooksincethegeneratorisself-adjoint. Ifthejumprateshavemeanzero,thegeneratoroftheexclusionprocesssatisfiesa sectorconditionandwemaystillapplythegeneraltheory. In the asymmetric case, the picture is different. The duality introduces an or- thogonaldecompositionoftheL2 spacewhichpermitstoconsiderthecentrallimit theoremfromtheperspectiveofthegradedsectorcondition.However,oneneedsto assumethatthedimensionislargerthanorequaltothreetoprovethattheasymmet- ricpartofthegeneratorwhichchangesthedegreeofafunctionsatisfieshypothesis (2.45)assumedinthegeneraltheory.Moreover,theasymmetricpartofthegener- atorwhichkeepsthedegreesofthefunctionsdoesnotsatisfycondition(2.50).To overcomethisobstacleamethod,knownastheremovalofthehardcoreinteraction, hasbeendevelopedandispresentedinTheorem5.19. Toproceedstepbystep,increasingprogressivelythelevelofdifficulty,wefirst present a central limit theorem for additive functionals of asymmetric exclusion processesindimensiond≥3whenthedensityofparticlesisequalto1/2,inwhich case the asymmetricpart of thegenerator whichkeeps the degreeof the functions does not appear. In the following section we examine the full asymmetric case in d≥3.InthelastsectionofthischapterwepresentsomeresultsontransientMarkov chainsneededinthechapterandwhichhaveintrinsicinterest. Inthefollowingtwochapters,weextendthecentrallimittheoremtothecaseofa taggedparticle,derivingtheself-diffusioncoefficientofexclusionprocesses,andto thecaseofasecondclassparticlewhichisconnectedtotheequilibriumfluctuations fromthehydrodynamiclimitoftheempiricalmeasure,KipnisandLandim(1999). In thelast chapterof thissecondpartof thebookweprovethattheasymptotic variance depends smoothly on the density of particles. In particular, we show that theself-diffusionandthebulkdiffusioncoefficientsaresmoothfunctions,aproperty whichhasimportantconsequencesinthetheoryofhydrodynamiclimits. PartIIIdealsentirelywithdiffusionsinrandomenvironments.Chapter9contains themainapplicationsofthegeneraltheory.Itstartswiththeperiodicenvironments, where a spectral gap is present in the dynamics. In the quasi-periodic case we il- lustrate the loss of compactness and of the spectral gap property. This motivates thestudyofgeneralergodicrandomenvironments.Chapter10containsvariational principlesforthehomogenizeddiffusionmatrix,whilethefollowingchapterscon- tainsomeotherapplicationsandextensions:divergencefreedrifts(Chap.11,where the homogenized diffusion is enhanced by the microscopic convection), Gaussian drifts(seeChap.12),wherewehaveincludedalsothediscussiononsuperdiffusion effectduetolargeconvection.Chapter13dealswiththeOrnstein–Uhlenbeckpro- cess in a random potential. The final Chap. 14 is dedicated to the relation of this probabilistic approach with the classical analytic homogenization theory and the notionsofG-convergenceofoperatorsandΓ-convergenceofquadraticforms.
Description: