ebook img

Flow Lines and Algebraic Invariants in Contact Form Geometry PDF

218 Pages·2003·16.936 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Flow Lines and Algebraic Invariants in Contact Form Geometry

Progress in NonlinearDifferential Equations and TheirApplications Volume 53 Editor HaimBrezis UniversitePierreetMarieCurie Paris and RutgersUniversity NewBrunswick,N.J. EditorialBoard AntonioAmbrosetti,ScuolaNormaleSuperiore,Pisa A. Bahri,RutgersUniversity,NewBrunswick FelixBrowder,RutgersUniversity,NewBrunswick LuisCafarelli,InstituteforAdvancedStudy,Princeton LawrenceC.Evans,UniversityofCalifornia,Berkeley MarianoGiaquinta,UniversityofPisa DavidKinderlehrer,Carnegie-MellonUniversity,Pittsburgh SergiuKlainerman,PrincetonUniversity RobertKohn,NewYorkUniversity P.L.Lions,UniversityofParisIX JeanMawhin,UniversiteCatholiquedeLouvain LouisNirenberg,New YorkUniversity LambertusPeletier,UniversityofLeiden PaulRabinowitz,UniversityofWisconsin,Madison JohnToland,UniversityofBath Abbas Bahri Flow Lines and Algebraic Invariants in Contact Form Geometry Springer Science+Business Media, LLC Abbas Bahri Rutgers University Department of Mathematics New Brunswick, NJ 08903 U.S.A. Library of Congress Cataloging-in-Publication Data Bahri, Abbas. Flow lines and algebraic invariants in contact form geometry / Abbas Bahri. p. cm. - (Progress in nonlinear differential equations and their applications ; v. 53) Includes bibliographical references. ISBN 978-1-4612-6576-4 ISBN 978-1-4612-0021-5 (eBook) DOI 10.1007/978-1-4612-0021-5 1. Global differential geometry. 2. Riemannian manifolds. 3. Manifolds (Mathematics) 1. Title. II. Series. QA670.B34 2003 516'.3'62-dc21 2002038316 CIP AMS Subject Classifications: 53C15, 53C21, 58F05, 70H05, 34A26, 35A15, 55P35 Printed on acid-free paper © 2003 Springer Science+Business Media New York Originally published by Birkhauser Boston in 2003 Softcover reprint of the hardcover 1s t edition 2003 AlI rights reserved. This work may not be translated or copied in whole or in part without the writ ten permission of the publisher (Springer Science+Business Media, LLC), except for brief ex cerpts in connection with reviews or scholarly analysis. U se in connection with any form of infor mation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter deve10ped is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especialIy identified, is not to be taken as a sign that such names, as unde stood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. SPIN 10901762 Reformatted from author's files by John Spiegelman, Abbington, PA. 987 6 5 4 3 2 1 Contents Prologue 1 Introduction,StatementofResults,andDiscussion ofRelatedHypotheses 3 1 Topologicalresults 4 2 Intermediatehypotheses(A4), (A4)',(AS),(A6) 7 3 Thenon-Fredholmcharacterofthis variationalproblem, the associatedcones,condition(AS)(discussionandremoval)....8 4.a Hypothesis(A4)andstatementofthemostgeneralresults, discussion of(A4) 10 4.b Discussionof(A2),(A3),and(A4) 12 OutlineoftheBook 15 I Review ofthe Previous Results, Some Open Questions..17 I.A SetupoftheVariationalProblem 19 LA.l Introduction 19 LA.2 The variationalframework 20 LA.3 The topology ofCf3 .•.•............•......•..•....•••.•..22 LA.4 Bundlesatinfinity 26 rr2k LA.4.a andthespaceofv-verticals, thecharacteristic pieces 26 I.A.4.b The Hd-bundles 26 LA.4.c Neighborhoodsofinfinity 27 LA.S Non-Fredholmbehavior,isotopicdeformationofcurves 28 LA.6 Descriptionofthe variouscriticalpointsatinfinityandtheir associatedcones 30 LA.6.1 Descriptionofthevariouscriticalpointsatinfinity 30 LA.6.2 Thedifferenceoftopology 32 LA.6.2.a TheMorseindex,differenceoftopology dueto acriticalpointatinfinityofthefirsttypeandnot ofthethirdtype 32 vi Contents LA.6.2.b Differenceoftopologyduetoacriticalpointor criticalpointatinfinityofthethirdkind.....32 I.A.6.2.c Differenceoftopologyduetoafalsecritical z- pointatinfinityofthesecondkind 34 LA.6.2.d Thedifferenceoftopologyduetoacriticalpoint atinfinityofthesecondandthirdkinds ..... 35 LA.6.2.e Thedifferenceoftopologyduetoacriticalpoint atinfinityofmixedtypeandthethirdkind...35 I.B TheFlow Zoof[2]: CriticalPointsatInfinity,Falseand Thue 37 LB.l Abriefdescriptionoftheflow Zodefinedin [2] 37 LB.2 The HJ-flow 39 LB.3 Theflow atinfinity 49 LB.4 Falsecriticalpointsatinfinityofthefirsttype 50 LB.5 Ajustificationoftheflow definedbythenonnals 51 LB.6 Transversalityholds 53 LB.7 Asketchofthedefonnationargumentof[2] 55 LB.8 Someprecisionaboutthesmallnonnalsflow of[2] 61 LB.9 Appendix: TheexitsetfrominfinityintoCp 65 II IntermediateSection: Recalling the Results Described in the Introduction, Outlining the Contentofthe Next Sectionsand HowThese Results are Derived..••••.....71 III TechnicalStudy ofthe Critical Pointsat Infinity: VariationalTheory without the Fredholm Hypothesis •• 75 UI.A TeueCriticalPointsatInfinity•.....••••.••••.•.....•••••••••77 x III.A.a Onthenumberofzerosofthe v-componentof along Wu(Voo) 77 IILA.b ThePoincare-returnmapofatruecriticalpointatinfinityXoo78 III.A.c Themodificationofthenumberofzeroson Wu(Voo): Transmutations " 81 III.B FalseCriticalPointsatInfinityoftheSecondKind•.•.••••.•103 III.B.l Ahiddencompaniontodegeneratingperiodic orbits 103 L~=l r2k III.B.2 Criticalpointsof on 107 ct Qj III.B.3 Nonnalsin andlocalparametrizationnearafalsecritical pointatinfinityofthesecondkind 109 ct IILB.3.a Thenonnals in whichdonotincreasethenumberof zerosofb,andtherelatedconditions 109 Contents vii m.B.3.b Local parametrizationnearafalse infinityofthesecond kind 112 III.B.4 The numberofzerosontheunstablemanifolds ofafalse criticalpointatinfinityofthesecondkind. Theself-adjustingdirectionsofthenormalindex 119 III.B.5 Changeofpartofthe normalindexintothetangentialindex, orvice versa, atafalse criticalpointatinfinityofthesecond kind 123 m.B.6 Conesassociatedtoafalsecriticalpointatinfinity ofthesecondkind 126 m.B.7 Singularities,cancellations,transmutationsalong differentiable homotopies 127 III.B.8 More 130 III.B.8.a Moreonsingularities 130 m.B.8.b Moreontransmutations 133 m.B.9 ThePoincare-returnmapofafalsecriticalpointatinfinityof mixedtypepreservesarea 134 III.B.I0 Topologicalremarks 136 IV Removalof(AS) 143 IV.l TheDifferenceofTopologyDuetoa FalseCriticalPointat InfinityoftheThirdKind.••..•••.•..••..••..••••.••••..•••145 IV.2 CompletionoftheRemovalof(AS)..•••••••••.•..••••..••••151 IV.3 CriticalPointsatInfinityofMixedType•••.••••.••••.•••..• 191 IV.4 (AS)andtheCriticalPointsatInfinityoftheThirdKind orofMixedType ..•...•...•....•..••.•••.••.••••..•••••••• 193 V Conditions (A2)-(A3)-(A4)-(A6).••.•••••••..•••••.••195 V.l AnOutlineforthe Removalof(A2)••..••.••..••••.••.••••••197 V.2 Discussionof(A3) ..•.•...•..••..••.••••••••••••..••••.•••• 207 V.3 WeakeningCondition(A4)..••.••.•..••..••..•..•.••..••••.213 V.4 RemovingCondition(A6).••.•••.•••••..••..••.••••.••••••.215 References 217 Flow Lines and Algebraic Invariants in Contact Form Geometry Introduction, Statement of Results, and Discussion of Related Hypotheses Thismonographisrelatedtotwopreviousones,[1]and[2],inthesamedirection and is an attempt to createa new tool for the studyofoneorseveral aspects of thedynamicsofacontactstructureandacontactvectorfieldinthefamily which itdefines. In a very early work, never published but related in full detail in the first sectionsof[1],wehad,incollaborationwithD.Bennequin,givenacontactform a on athree-dimensionalcompactmanifold M andanonsingular vectorfield v fJ = in its kernel, setup avariational problem J(J(x) ax(.i)dt) on aspaceof Legendriancurvesx E CfJ' where CfJ ={x E HI(Sl, M) suchthatda(x, v) ==0, a(x) =Cste > OJ. = Thevariationalproblem Jon CfJ' underthe hypothesis thatfi da(v, .) wasa contactform, hadtheperiodicorbitsofthecontactvectorfieldofa,~,ascritical points. However, J onCfJ wasill-posedinthatitsgradientwasnotFredholmand thedecreasingflow-lines ofanyassociatedpseudo-gradientwere notcompact. Afternoticingthesefacts, weundertookthegoaloftryingtoovercomethese difficultiesandtounderstandthenon-Fredholmcharacterandthenoncompactness ofthis variationalproblem. In [1],webuilt,undersomeratherdemandinghypotheses,apseudo-gradient Z for which we wereable to describe the noncompactness. We showed that, to eachnoncompactflow-line ofZ, wecouldassociatealimitcurvewhichdidnot belongto CfJ buttosomeboundaryofCfJ. Suchcurves were madeofpiecesof ~-orbitsalternatedwithpiecesof±v-orbitsrunningbetween"conjugatepoints" (seePartIfor alldefinitions). In [2], weimprovedonthis result: webuiltanew pseudo-gradient Zo under thesolehypotheses: (At)The bundledefinedbykera over Mistrivializable. (A2) fi = da(v, .) isacontactformdefining thesameorientationasa. Zo had an interesting property-(P) in this introduction-which could be thoughtofasbothanalyticalandgeometrical. Namely,denotingx=a~+bvthe A. Bahri, Flow Lines and Algebraic Invariants in Contact Form Geometry © Birkhäuser Boston 2003 4 Introduction,StatementofResults tangentvectortoacurvex ofCfJ, thenumberofzerosofbneverincreasedalong thedecreasingflow-lines ofZoo In [2] asin [1],the noncompactanddecreasing flow-linesofZocouldbetracedbacktoafamilyofcurves,ofthesametypeasthe onesfoundforZ,onlywithmorediversity. ThisfamilyisdescribedinChapterI.A ofthe present work. Astudy ofthese limiting curves was started in [2] and is m pushedmuchfurtherinPart ofthepresentwork. Atthetopologicallevel,we indicateinsectionI.A.4cananalogybetweenthespaceofformalbarycentersover amanifoldandthespaceoftheselimitingcurves. Thisanalogymightturnoutto bemeaningfulin more thanonedirection, sincethespaceofformal barycenters appearsinanatural way when the noncompactnessinYamabe-typeproblemsis studied(see [3],forexample). Ontheotherhand,asweindicateinI.A.4b, thespaceoftheselimitingcurves bears an analogy with discrete models for the free loop space of a manifold developedbytopologistsinthe 1980s(see [4], [5], [6],forexample). 1. Topological results Themaingoalofthisbookis todraw all thepossibleconsequences,atthetopo logicallevel, from (P).Thisideais simple: First, since Zo satisfies (P), wecan alsothinkofJ asdefinedon C$ = {x E CfJ suchthatthe v-componentofX, b,hasatmost2p zeros}. WeproveinI.BthatgeneralpositionargumentsapplyforZo,Le.,thatwecan assume that the stable and unstable manifolds ofthe critical points (at infinity) of Zo intersect transversally while (P) holds. Therefore, we may considerthe intersectionoperatoraofthevariationalproblemJ onC$. Thisprovidesrefined a versionsofthefull intersectionoperator on CfJ. Next, weassumeanadditional hypothesis: Let,foreachk E N*, r2k bethespaceofcurvesmadeofkpiecesof~-orbits alternated withk piecesof±v-orbits. Weassumethefollowing: (A3) J(x), extendedandrestrictedtoUk rZko has,oneach r2k, adecreasing pseudo-gradientsatisfyingthePalais-Smalecondition. (A3) willbediscussed later. Under(A3), wecanmodify Zo and incorporate in it the pseudo-gradient defined on Uk r2k. (P) holds for this new Zoo The noncompactdecreasing flow-lines of Zo change and become acountablesetof isolatedasymptotesconvergingtocriticalpointsorcriticalpointsatinfinity(x~) forwhichaMorseindexandastableandan unstablemanifoldatinfinitycanbe defined. The definitions ofthese stable and unstable manifolds involve some complication, due to the non-Fredholm character of this variational problem. Thiscomplicationisdiscussedlater. We quote now a result of [7] which states that, under the general position assumption, if x~, a critical point (at infinity) of Morse index m, dominates x:;'_l'acriticalpoint(atinfinity)ofMorseindexm - 1,then Wu(x:;'_l) C Wu(x;;»

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.