EnvironFluidMech(2013)13:503–525 DOI10.1007/s10652-013-9277-4 ORIGINAL ARTICLE Flow aeration, cavity processes and energy dissipation on flat and pooled stepped spillways for embankments PhilippGuenther · StefanFelder · HubertChanson Received:15November2012/Accepted:9March2013/Publishedonline:27March2013 ©SpringerScience+BusinessMediaDordrecht2013 Abstract Thedesignfloodsofseveralreservoirswererecentlyre-evaluatedandtherevised spillwayoutflowcouldresultindamovertoppingwithcatastrophicconsequencesforsome embankmentstructures.Hereinaphysicalstudywasperformedonflatandpooledstepped spillwayswithaslopetypicalofembankments(θ=26.6◦)andfoursteppedconfigurations were tested: a stepped spillway with flat horizontal steps, a pooled stepped spillway, and twosteppedspillwayswithin-lineandstaggeredconfigurationsofflatandpooledsteps.The focusofthestudywasontheflowaeration,air–waterflowproperties,cavityflowprocesses, and energy dissipation performances. The results demonstrated the strong aeration of the flow for all configurations. On the in-line and staggered configurations of flat and pooled steps,theflowwashighlythree-dimensional.Theresidualheadandenergydissipationrates atthesteppedchutedownstreamendwerecalculatedbaseduponthedetailedair–waterflow properties.Theresultsshowedthattheresidualenergywasthelowestfortheflatsteppedweir. Thedataforthesteppedspillwayconfigurationwithin-lineandstaggeredconfigurationsof flat and pooled steps showed large differences in terms of residual head in the transverse direction. Altogether the present results showed that, on a 26.6◦ slope stepped chute, the designswithin-lineandstaggeredconfigurationsofflatandpooledstepsdidnotprovideany advantageousperformancesintermsofenergydissipationandflowaeration,buttheywere affectedbythree-dimensionalpatternsleadingtosomeflowconcentration. Keywords Steppedspillways·Flowaeration·Cavityejectionprocesses· Energydissipation·Pooledsteps·Residualhead·Physicalmodelling B PhilippGuenther·StefanFelder·HubertChanson( ) SchoolofCivilEngineering,TheUniversityofQueensland,Brisbane,QLD4072,Australia e-mail:[email protected] URL:http://www.uq.edu.au/∼e2hchans/ 123 504 EnvironFluidMech(2013)13:503–525 1 Introduction Worldwide the design floods of several reservoirs were re-evaluated and the revised spill- way outflow was often larger than the original design one. The occurrence of such large floods could result in dam overtopping with catastrophic consequences for embankment structures when an insufficient storage and spillway capacity is available. During the last decades, a number of overtopping protection systems were developed for embankment structuresandearthfilldams.Theseincludeconcreteovertoppingprotectionsystems,tim- ber cribs, sheet-piles, riprap and gabions, reinforced earth, minimum energy loss (MEL) weirs, in-built spillway dams, embankment overflow stepped spillways and the precast concrete block protection systems developed by the Russian engineers [2,9,10,26]. A numberofembankmentdamsteppedspillwayswerebuiltwitharangeofdesignandcon- struction techniques, including gabions, Reno mattresses, reinforced earth, pre-cast con- crete slabs and roller compacted concrete (RCC) [5,6]. The stepped profile allows an increased rate of energy dissipation on the spillway chute [6,27] and the design engi- neers must assess accurately the turbulent kinetic energy dissipation down the staircase chute, in particular for the large discharges per unit width corresponding to the skim- ming flow regime. A characteristic feature of skimming flows is the high level of turbu- lence and free-surface aeration [4,29,31]. The water flows down the steps as a coherent free-stream skimming over the pseudo-bottom formed by the step edges, while the tur- bulent recirculation in the step cavities is maintained through the transmission of shear stressfromthefree-stream.Atthefree-surface,airiscontinuouslyentrainedandreleased, and the resulting two-phase mixture interacts with the flow turbulence yielding some intricate air–water structures associated with complicated energy dissipation processes [15,24]. Inrecentyears,theair–waterflowsonpooledsteppedspillwayswereresearchedinafew studies (Table 1). André [1] and Ko˝kpinar [25] investigated the air entrainment processes onflat,pooledandacombinationofflatandpooledstepswithchannelslopesof18.6◦ and ◦ 30 . Thorwarth [33] researched the self-induced instabilities on pooled stepped spillways withslopesof8.9◦ and14.6◦.RecentlyFelderetal.[22]conductedadetailedstudyofthe air–water flow properties on a stepped spillway with flat, pooled and combination of flat andpooledstepswithaslopeof8.9◦.Figure1ashowsaprototypepooledsteppedspillway. Arelatedformofpooledsteppedchutesissomesteppedfishwaydesign.Figure1bshows a fishway designed with a staggered combination of flat and pooled steps. This particular structurecannotbeconsideredsuccessfulhowever,becausesomeflowconcentrationyielded someveryhighvelocitiesatthedownstreamendofthefishpassagewhichweredetrimental totheupstreamfishmigration. Whilethepredictionofturbulentdissipationconstitutesacriticaldesignstage,themodern literatureisskewedtowardssteepslopedesignswithflathorizontalsteps,typicalofmodern gravitydams.Thispaperpresentssomenewphysicalexperimentsconductedinalargefacility ◦ with a channel slope of 26.6 (2H:1V) and step heights of 0.10 m. Such flow conditions would be representative of some stepped storm waterways during flood events and could be considered as a 2:1 to 20:1 scale study of the prototype chutes seen in Fig. 1. Four steppedgeometriesweretested:flathorizontalsteps,pooledsteps,andin-lineandstaggered configurationsofflatandpooledsteps(Fig.2).Thefocusofthepresentworkwas onthe flow aeration, cavity ejection processes and energy dissipation performances. The results emphasisethecomplicatednatureofturbulentair–waterflowsonsteppedspillways.Herein theaimofthestudyisadetailedcharacterisationoftheturbulentflowpropertiessupported bydetailedair–waterflowpropertiesintheskimmingflowregime. 123 EnvironFluidMech(2013)13:503–525 505 Fig.1 Photographsofpooledsteppedstructures.aPooledsteppedspillwayofLePontdam(France)inJune 1998—Leftlookingdownstream,Rightlookingupstream.bFishwaystructureontheOkuraRiver(Japan)on 9October2012—Thesteppedchannelconsistsofastaggeredcombinationofflatandpooledsteps 123 506 EnvironFluidMech(2013)13:503–525 Fig.2 Definitionsketchofthesteppedconfigurations 2 Physicalmodellingandinstrumentation 2.1 Presentation Inafree-surfaceskimmingflowdownasteppedspillway,adimensionalanalysisgivesaseries of dimensionless relationships between the two-phase flow properties at a dimensionless locationalongthechuteandthechannelcharacteristics,inflowpropertiesandfluidproperties [8,13,19]: (cid:2) V u(cid:5) g L d F×d C,√ , ,T × , xz, ab, c = (cid:3) g×dc V int dc dc dc Vc (cid:4) x y z w w l W d V×D g×μ4 W k(cid:5) F , , , , , w, w, c,ρ × H, w, ,θ, s (1) d d d h l d W h w μ ρ ×σ3 d d c c c c w w c c whereCisthevoidfraction,Vistheinterfacialvelocity,u’isaturbulentvelocityfluctuation, d isthecriticalflowdepth,D isthehydraulicdiameter,qisthewaterdischargeperunit c H width,Wisthechannelwidth,histheverticalstepheight,listhesteplength,wisthepool weirheightforapooledsteppedspillway,l isthehorizontalpoolweirlength,W isthe w w widthofthepooledandflatpartinthestaggeredandin-lineconfigurationsofflatandpooled steps, g is the gravity acceleration, θ is the chute slope, u’ is the characteristic turbulent velocity,T istheintegralturbulenttimescale,L istheintegralturbulentlengthscale,x, int xz y,zarerespectivelythelongitudinal,normalandtransversecoordinates,μ isthedynamic w viscosityofwater,ρ isthewaterdensity,σisthesurfacetensionbetweenairandwater,F w isthebubblecountrate,d isthecharacteristicbubblesizeandk ’istheequivalentsand ab s roughnessheightofthestepsurface. Equation(1)expressesthedimensionlessair–waterflowpropertiesatalocation(x,y,z)as functionsoftherelevantdimensionlessparameters,includingFroudeandReynoldsnumbers. InEq.(1),thedimensionlessdischar(cid:5)gedc/hisproportionaltoaFroudenumberdefinedin termsofthestepheight:d /h=(q2/ g×h3)1/3.Hereinthesamefluidswereusedinmodel c andprototype:thatis,theMortonnumberMog×μ4/(ρ ×σ3)wasaninvariant[11,30,36]. w w Similarly,thechuteslopeh/l,thechannelwidthW,thehorizontalpoolweirlengthl andthe w 123 EnvironFluidMech(2013)13:503–525 507 Table1 Summaryofexperimentalstudiesofair–waterflowpropertiesonpooledsteppedspillwayconfigu- rations Reference θ(◦) Stepgeometry Flowconditions Instrumentation Comment (1) (2) (3) (4) (5) (6) Ko˝kpinar[25] 30 Flatsteps:h=6 Q=0.03–0.100 Double-tip W=0.5m, cm,l=10.4cm m3/s, fiber- Pooledsteps:h=6 Re=2.4×105– optical 64steps, cm,l=10.4cm,w 8.0×105 probe =3cm Combinationof (Ø=0.08mm) lw=2.6cm flat/pooledsteps:h=6 cm,l=10.4cm,w=3 cm André[1] 18.6 Flatsteps:h=6cm,l Q=0.02–0.130 Double-tip W=0.5m, =17.8cm m3/s, fiber- Pooledsteps:h=6 Re=1.6×105–1.0×106 opticalprobe 42/64steps, cm,l=17.8cm,w =3cm Combinationof (Ø=0.08mm) lw=2.6cm flat/pooledsteps:h =6cm,l=17.8cm, w=3cm 30 Flat steps: h = 6 cm,l=10.4cm Pooledsteps:h=6 cm,l=10.4cm,w =3cm Combination of flat/pooled steps: h=6cm,l=10.4 cm,w=3cm Thorwarth[33] 8.9 Pooledsteps:h=5 Q=0.025–0.117 Double-tip W=0.5m, cm,l=31.9cm,w m3/s, conductiv- =0–5cm ityprobe 14.6 Pooledsteps:h=5 Re=2.0×105– (Ø=0.13mm) 22/26steps, cm,l=19.2cm,w 9.3×105 =0–5cm lw=1.5cm Felderetal.[22] 8.9 Flat steps: Q=0.018–0.117m3/s,Re Double-tip W=0.5m, h=5cm,l =1.4×105–9.3×105 conductiv- =31.9cm ityprobe Pooledsteps:h=w Q=0.027–0.117m3/s,Re (Ø=0.13mm) 21steps, =5cm,l=31.9cm =2.2×105–9.3×105 Combination of Q=0.027–0.117m3/s,Re lw=1.5cm flat/pooled steps: =2.2×105–9.3×105 h=w=5cm,l= 31.9cm stepsurfaceskinroughnessk ’werekeptconstantduringtheexperiments.Someexperiments s were conducted in the centreline, and others at different transverse locations z/d . Hence c Eq.(1)couldbesimplifiedinto: (cid:2) (cid:3) (cid:4) C,√gV×dc,uV(cid:5),Tint× dgc,Ldxcz,ddacb,FV×cdc =F(cid:5) dxc,dyc,dzc,wh,wl ,WWw,dhc,Re (2) 123 508 EnvironFluidMech(2013)13:503–525 Table1 continued Presentstudy 26.6 Flat steps: Q=0.030–0.113 Double-tip W=0.52m, h=10cm, m3/s,Re= conductiv- l=20cm 2.3×105– ityprobe 8.7×105 Pooled steps: h = Q=0.013–0.130 (Ø = 0.25 mm); 10steps, 10cm,l=20cm, m3/s,Re= Arrayof2single- w=3.1cm 1.0×105– tip conductivity 9.9×105 probes In-line configura- Q=0.016–0.113 (Ø=0.35mm) lw=1.5cm tion (Pooled and m3/s,Re= flatstepsin-line):h 1.4×105– =10cm,l=20cm, 8.7×105 w=3.1cm,Ww= 26cm Staggeredconfigu- Q=0.030–0.113 ration(Pooledand m3/s,Re= flatstaggered):h= 2.3×105– 10cm,l=20cm, 8.7×105 w=3.1cm,Ww= 26cm Notesθ channelslope,hstepheight,lsteplength,wweirheight,lwpoolweirlength,W channelwidth,Q waterdischarge,ReReynoldsnumberdefinedintermsofhydraulicdiameter,Wwwidthofpooledstepped sectionsinin-linedandstaggeredconfigurations whereReistheReynoldsnumber:Re = ρ ×V×D /μ .Thephysicalexperimentsare w H w traditionally conducted based upon an undistorted Froude similitude, although it is nearly impossibletoachieveatruedynamicsimilarityofhigh-velocityair–waterflowsinsmallsize laboratorymodelsbecauseofthenumberofrelevantdimensionlessparameters([8],pp.358- 263,[11]).Recentresultsdemonstratedthatthephysicalstudiesmustbeconductedinlarge size facilities operatingat large Reynolds numbers tominimise viscous scaleeffects [19]. HereinthestudywasperformedbaseduponanundistortedFroudesimilarityandtheexper- imentalflowconditions(Table1)wereselectedtoachievelargedimensionlessdischarges correspondingtoReynoldsnumbersrangingfrom1×105to1×106. 2.2 Physicalfacilityandinstrumentation NewexperimentswereperformedattheUniversityofQueenslandonalargesizestepped spillway model with a slope of 26.6◦. The experimental facility was newly designed. The stepped spillway consisted of 10 steps with step height h = 10 cm, and step length of l = 20cm.ThechutehadawidthW=0.52m.Thestepsweremadeoutofplywoodandthe channelwallsoutofperspex.Constantflowratesweresuppliedbyalargeupstreamintake basinwithasizeof2.9m×2.2mandadepthof1.5m.Asmoothinflowwassuppliedby a1.01mlongsmoothsidewallconvergentwitha4.23:1contractionratio.Attheupstream end of the test section, the flow was controlled by a broad-crested weir with height of 1 m, width W = 0.52 m, length L = 1.01m and an upstream rounded corner (r = 0.08 crest m).Thebroad-crestedweirwaspreviouslytestedandsomedetailedvelocityandpressure measurements[20]providedthedischargecalibrationcurveusedinthepresentstudy: (cid:6) (cid:3) (cid:4) (cid:3) (cid:4) Q H 2 3 = 0.92+0.153× 1 × g× ×H 0.02≤H /L ≤0.3 (3) 1 1 crest W L 3 crest 123 EnvironFluidMech(2013)13:503–525 509 Fig. 3 Photographs of the stepped configurations including in-line and staggered stepped arrangements (Bottom) View from upstream looking downstream (a, Left) Flat stepped arrangement (b, Right) Pooled steppedarrangement(c,Left)In-linesteppedarrangement(d,Right)Staggeredsteppedarrangement where Q is the water discharge and H is the upstream total head measured using a point 1 gauge. Atthedownstreamend,thesteppedchutewasfollowedbyasmoothhorizontalraceway ending with an overfall into the recirculation sump pit. The flow was supercritical in the horizontalracewayanddidnotinterferewiththesteppedchuteflow. Theair–waterflowmeasurementswereconductedwitheitheratwo-tipphase-detection intrusive probe (∅ = 0.25mm,(cid:4)x = 7.2mm,(cid:4)z = 1.5mm) or an array of two single- tipphase-detectionprobes(∅ = 0.35mm)separatedbyarangeofwell-definedtransverse distances3.5< (cid:4)z<81mm.Herein(cid:4)xisthelongitudinaldistancebetweenprobesensors and(cid:4)zisthetransversedistancebetweensensors.Theprobesensorswereexcitedbyanair bubbledetector(Ref.UQ82.518)andsampledat20kHzpertipfor45s.Allconductivity probetipsweremountedonatrolleyandtheirelevationinthedirectionperpendiculartothe pseudo-bottomformedbythestepedges(i.e.y-direction)wascontrolledbyafineadjustment screw-drivemechanismequippedwithaMitutoyoTMdigitalruler(accuracy<0.1mm). Further observations were conducted with a HD video camera SonyTM HDR-XR160E (StandardHQHDquality25fps),twodSLRcameraPentaxTMK-7andCanonTM450D.More detailsontheexperimentalfacility,instrumentationandexperimentaldatawerereportedin [23]. 2.3 Signalprocessing Therawdatarecordedwiththedouble-tipconductivityprobeyieldedthevoidfractionC, the bubble count rate F, the interfacial velocity V, and the turbulence intensity Tu. For all 123 510 EnvironFluidMech(2013)13:503–525 Fig.4 Skimmingflowregimeonflatandpooledsteppedspillways.aFlatsteps,Q=0.114m3/s,dc/h= 1.7,Re=8.8×105.bPooledsteps,Q=0.100m3/s,dc/h=1.56,Re=7.7×105 experiments, the void fraction, bubble frequency and particle chord sizes were calculated baseduponasingle-thresholdtechniquewithathresholdsetat50%oftheair–waterrange [34].Theinterfacialvelocity,turbulenceintensityandintegralturbulentscaleswerecalcu- latedusingsomecorrelationtechnique[7,12]. Thedataforthearrayofthetwosingle-tipprobesprovidedthetransverseintegralturbulent timeandlengthscalesT andL .Anintegrationofthemaximumcross-correlationvalues int xz (R ) betweentherawdataofthetwosingle-tipprobeswithvariousspacing(cid:4)zgavethe xz max integralturbulentlengthscale[12]: 123 EnvironFluidMech(2013)13:503–525 511 Fig.5 Three-dimensionalskimmingflowsdownthein-lineandstaggeredconfigurationsofflatandpooled steps(a,Left)In-lineconfiguration,Q=0.098m3/s,dc/h=1.54,Re=7.6×105(b,Right)Staggeredconfig- uration,Q=0.090m3/s,dc/h=1.45,Re=6.9×105 z=z((R(cid:7)xz)max=0) L = (R ) ×dz (4) xz xz max z=0 Thecorrespondingintegralturbulenttimescalewasalsocalculated: z=z((R(cid:7)xz)max=0) 1 T = × (R ) ×T ×dz (5) int L xz max xz xz z=0 whereT isthecross-correlationintegraltimescalecalculatedinanintegrationfromthe xz maximumofthecross-correlationfunctionuntilthefirstcrossing. 2.4 Experimentalinvestigations Theexperimentalstudywasconductedforfoursteppedspillwayconfigurations(Figs.2,3). Thesewereasteppedspillwaywithflathorizontalsteps,apooledsteppedspillwaywithweir heightw=0.031m,andtwosteppedspillwayswithin-lineandstaggeredconfigurationsof flatandpooledsteps(w=0.031m).Thein-linesteppedspillwayconfigurationconsistedof pooledandflatstepsin-lineforhalfthechannelwidth(W =W/2=0.26m).Thestaggered w pooledsteppedspillwayconfigurationwascharacterisedbyalternatingflatandpooledsteps. Ontheflatandpooledsteppedspillways,theair–waterflowmeasurementswereconducted 123 512 EnvironFluidMech(2013)13:503–525 Fig.6 Definitionsketchesof sidewallstandingwavesand shockwavesinsteppedchutes within-lineandstaggered configurationsofflatandpooled steps.aIn-lineconfigurationof flatandpooledsteps.bStaggered configurationofflatandpooled steps on the channel centreline. For the in-line and staggered configurations, the measurements wereperformedatthreetransverselocations:z/W=0.25,0.5(centreline)and0.75. Theflowpatternswereobservedforawiderangeofdischarges:0.002≤Q≤0.155m3/s. Theair–waterflowmeasurementswereperformedfordischargeswithin0.013≤Q≤0.130 m3/scorrespondingtoReynoldsnumbersbetween1×105 and1×106.Mosttwo-phase flowexperimentswereconductedinthetransitionandskimmingflowregimes(seebelow). 3 Flowpatterns Thevisualobservationsofflowpatternswereconductedforallsteppedspillwayconfigura- tionsforabroadrangeofdischarges.Forsomelowdischarges,theair–waterflowsonthe pooledsteppedspillwayexhibitedsomesmallinstabilitieslinkedwithsomeflowpulsations. Theflowprocessesonthesteppedspillwayswithin-lineandstaggeredconfigurationsofflat andpooledstepsshowedsomestronglythree-dimensionalair–waterflowfeaturesincluding standingsidewallwavesandsupercriticalshockwaves. 123
Description: