ebook img

Flexible robotic control via co-operation between an operator and an ai-based control system PDF

159 Pages·2012·17.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Flexible robotic control via co-operation between an operator and an ai-based control system

FLEXIBLE ROBOTIC CONTROL VIA CO-OPERATION BETWEEN AN OPERATOR AND AN AI-BASED CONTROL SYSTEM by EMMANOUIL CHIOU Athesissubmittedto TheUniversityofBirmingham forthedegreeof DOCTOROFPHILOSOPHY SchoolofComputerScience CollegeofEngineeringandPhysicalSciences TheUniversityofBirmingham 11thApril2017 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Thisthesisaddressestheproblemofvariableautonomyinteleoperatedmobilerobots. Vari- ableautonomyreferstotheapproachofincorporatingseveraldifferentlevelsofautonomous capabilities(Level(s)ofAutonomy(LOA))rangingfrompureteleoperation(humanhascom- pletecontroloftherobot)tofullautonomy(robothascontrolofeverycapability), within a single robot. Most robots used for demanding and safety critical tasks (e.g. search and rescue,hazardousenvironmentsinspection),arecurrentlyteleoperatedinsimpleways,but couldsoonstarttobenefitfromvariableautonomy. Theuseofvariableautonomywould allowArtificialIntelligence(AI)controlalgorithmstoautonomouslytakecontrolofcertain functionswhenthehumanoperatorissufferingahighworkload,highcognitiveload,anxiety, orotherdistractionsandstresses. Incontrast,somecircumstancesmaystillnecessitatedirect humancontroloftherobot. Morespecifically,thisthesisisfocusedoninvestigatingtheissues ofdynamicallychangingLOA(i.e. duringtaskexecution)usingeitherHuman-Initiative(HI) orMixed-Initiative(MI)control. MIreferstothepeer-to-peerrelationshipbetweentherobot andtheoperatorintermsoftheauthoritytoinitiateactionsandLOAswitches.HIreferstothe humanoperatorsswitchingLOAbasedontheirjudgment,withtherobothavingnocapacity toinitiateLOAswitches. AHIandanovelexpert-guidedMIcontrollerarepresentedinthis thesis. Thesecontrollerswereevaluatedusingamultidisciplinarysystematicexperimental framework,thatcombinesquantifiableandrepeatableperformancedegradationfactorsfor both the robot and the operator. The thesis presents statistically validated evidence that variableautonomy,intheformofHIandMI,providesadvantagescomparedtoonlyusing teleoperationoronlyusingautonomy,invariousscenarios. Lastly,analysesoftheinterac- tionsbetweentheoperatorsandthevariableautonomysystemsarereported. Theseanalyses highlighttheimportanceofpersonalitytraitsandpreferences,trustinthesystem,andthe understandingofthesystembythehumanoperator,inthecontextofHRIwiththeproposed controllers. Acknowledgments TheysayhavingmorethanonePhDsupervisorscanbecomplicated. Thiswascertainlynot thecaseinmyPhD.Iwasveryfortunatetohavesuchanunderstandingandsupportiveteam of supervisors. Their multidisciplinary guidance and support proved invaluable. Rustam Stolkin,NickHawes,KimromShapiro;Iamverygrateful,thankyou! RustamandNickwere alwaysthereformeandprovidedmewithtrustandfreedomonhowtomanagemytime, ideas,andplans. Thisfreedomwasoneofthemostimportantfactorscontributingtothis thesis. KimandthepeopleoftheVisualExperienceLabmademefeelalwayswelcomein theirlabmeetings. Withoutthediscussionsandinsightscomingfromthosemeetingsonhow toconductexperimentswithhumanparticipants,thisthesiswouldhavebeenimpossible. Next,IwouldliketothankthedstltechnicalpartnerTimothyHarrisonforbelievinginthis projectandforbeingveryhelpfultowardsovercomingthestrictdstlprocedures. Iwouldalso liketothankJeremyBaxterforbeeninthesupervisionteamforthefirstyearofthisproject. I am also thankful to Michael Mistry and Russell Beale for all the useful discussions and constructivefeedbacktheyprovidedmeduringmythesisgroupmeetings. Moreover,Iam thankful to the IRlab and ERL members for providing me with feedback on my work. In particular to Chie Takahasi for the long discussions on the human factors aspects of my experiments. Iwishtoacknowledgethehelpprovidedbytheco-authorsofmy(our)papers. GodaBieksaite, JessKerlin,andAndrewClouteryourhelpwasmuchappreciated. Special thankstomy parents, family, andfriends. Theirsupportinsomanylevelsduring those4yearswaspriceless. Lastly,shoutouttoallthepeoplewhoparticipatedinmyexperiments. Theytrulymadethe processoffindingvolunteersandrunningtheexperiments,abreeze. This research was supported by the British Ministry of Defence and the UK Defence Sci- ence and Technology Laboratory, under their PhD bursary scheme, contract no. DSTLX- 1000074621. Abbreviations • AmericanAssociationforArtificialIntelligence(AAAI) • ArtificialIntelligence(AI) • analysisofvariance(ANOVA) • Electroencephalography(EEG) • ExplosiveOrdnanceDisposal(EOD) • Fisher’sleastsignificantdifference(LSD) • Human-RobotInteraction(HRI) • Human-Initiative(HI) • Level(s)ofAutonomy(LOA) • Mixed-Initiative(MI) • NASATaskLoadIndex(NASA-TLX) • OperatorControlUnit(OCU) • reactiontime(RT) • RobotOperatingSystem(ROS) • SearchandRescue(SAR) • SituationAwareness(SA) • SimultaneousLocalizationandMapping(SLAM) • UrbanSearchandRescue(USAR) Contents ListofTables vii ListofFigures ix 1 INTRODUCTION 1 1.1 Contextofresearchandprojectsummary. . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Autonomyversusteleoperation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Interfacesandtelepresence . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 VariableautonomyandMixed-Initiative . . . . . . . . . . . . . . . . . . . 7 1.3 ContributionsofthisThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 ListofPublications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Thesisstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 BACKGROUND 12 2.1 Human-RobotInteraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.1 Human-RobotInteractiondefinitionandcontext . . . . . . . . . . . . . . 13 2.1.2 Human-RobotInteractionawareness . . . . . . . . . . . . . . . . . . . . . 14 2.1.3 Human-RobotInteractionfieldstudies . . . . . . . . . . . . . . . . . . . . 15 2.1.4 MetricsforHuman-RobotInteractionandmobilerobots . . . . . . . . . 17 2.2 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Interfacesasawaytoimproveteleoperation . . . . . . . . . . . . . . . . . 18 2.2.2 Situationawarenessandtheuseofmaps . . . . . . . . . . . . . . . . . . . 19 2.3 Variableautonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Thenotionoflevelsofautonomy . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.2 Sharedcontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.3 Tradedcontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.4 Multiplelevelsofautonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Dynamicallyswitchinglevelsofautonomy . . . . . . . . . . . . . . . . . . . . . . 28 2.4.1 Conductingvariableautonomyexperiments . . . . . . . . . . . . . . . . . 29 2.4.2 Human-Initiativevariableautonomy . . . . . . . . . . . . . . . . . . . . . 30 2.4.3 DefinitionandtaxonomyofMixed-Initiativecontrol . . . . . . . . . . . . 32 2.4.4 Mixed-Initiativecontrolrelatedsystems . . . . . . . . . . . . . . . . . . . 33 2.4.5 Human-RobotInteractionwithLOAswitchingrobots . . . . . . . . . . . 35 2.5 Measuringandinducingcognitiveworkload . . . . . . . . . . . . . . . . . . . . . 36 2.5.1 Physiologicalmeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5.2 Subjectivemeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5.3 Taskperformancemeasures . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 TOWARDSTHEPRINCIPLEDSTUDYOFVARIABLEAUTONOMY 40 3.1 Systemdescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Pilotexperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 Tasksandrobotarena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.2 Participantsandexperimentaldesign . . . . . . . . . . . . . . . . . . . . . 46 3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Suggestionsforfutureexperiments . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4 Conclusionandimpact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4 EXPERIMENTALANALYSISOFHUMAN-INITIATIVEVARIABLEAUTONOMY 55 4.1 Apparatusandroboticsoftware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Experimentaldesignandprocedure . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.1 Experimentalsetup-operatorcontrolunitandrobottestarena . . . . . 59 4.2.2 Primaryandsecondarytasks,andexperimentaltestmodalities . . . . . 61 4.2.3 Participantsandprocedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3 Human-Initiativesystemperformanceanalysis . . . . . . . . . . . . . . . . . . . 65 4.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4 Human-InitiativeHuman-RobotInteractionanalysis . . . . . . . . . . . . . . . . 70 4.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.5 Conclusionsandimpact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 DESIGNANDEVALUATIONOFAMIXED-INITIATIVECONTROLSYSTEM 76 5.1 Frameworkfordesigninganexpert-guidedMixed-Initiativeroboticsystem . . 78 5.2 Designingtheexpert-guidedMixed-Initiativecontrollerfornavigation . . . . . 80 5.2.1 ThresholdMixed-Initiativecontroller . . . . . . . . . . . . . . . . . . . . . 81 5.2.2 FuzzyMixed-Initiativecontroller . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3 Evaluationusingasimulatedrobotandtestenvironment . . . . . . . . . . . . . 89 5.3.1 Results: tasksperformance . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3.2 Results: Human-Robot-Interaction . . . . . . . . . . . . . . . . . . . . . . 93 5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.4 Evaluationusingrealrobotandtestenvironment . . . . . . . . . . . . . . . . . . 98 5.4.1 Experimentalsetup-apparatus,robottestarena,andcontrolmodes . . 99 5.4.2 Tasksandperformancedegradationfactors . . . . . . . . . . . . . . . . . 102 5.4.3 Participantsandexperimentaldesign . . . . . . . . . . . . . . . . . . . . . 105 5.4.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.4.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.5 Conclusionandimpact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6 CONCLUSIONSANDFUTUREWORK 116 6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.2 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.3 Closingthoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 References 125 Appendices 140 A STATISTICS 141 A.1 Statisticalmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 List of Tables 3.1 TheANOVAcalculationsforthemetricsusedintheexperiment. Descriptive statistics,withtheexceptionofcollisions,areshownonlyfortheconditionsthat asignificantstatisticaldifferencewasfound. . . . . . . . . . . . . . . . . . . . . . 51 4.1 TableshowingtheANOVAresultsandthedescriptivestatisticsforthemetrics used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1 Thefuzzyrulebase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2 Thefuzzymembershipfunctionsforlinguisticvaluesofinputvariables"error" and"speed"(seeFig. 5.2). For"error",trapezoidmembershipfunctionshave beenused. For"speed"membershipfunctions,twotrapezoidfor"reverse"and "forward"andonetriangularfor"zero",wereused. Themembershipfunctions wereheuristicallychoseninordertosmoothlyoverlapthroughouttheuniverse ofdiscourse. Thisisacommonpracticewhendesigningfuzzycontrollers. The membershipfunctionfor"errorlarge"waschosenbasedontheerrorthreshold calculatedinSection5.2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3 TableshowingtheANOVAresultsandthedescriptivestatisticsforthemetrics usedintheexperiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Description:
performance degrading factors both for the human and the robot; c) standardized training for Electrophysiological Feedback in Adaptive.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.