ebook img

Flexible Robot Manipulators - Modelling, Simulation and Control PDF

569 Pages·2008·8.799 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Flexible Robot Manipulators - Modelling, Simulation and Control

Flexible Robot Manipulators Modelling, simulation and control Edited by M.O. Tokhi and A.K.M. Azad TheInstitutionofEngineeringandTechnology PublishedbyTheInstitutionofEngineeringandTechnology,London,UnitedKingdom ©2008TheInstitutionofEngineeringandTechnology Firstpublished2008 ThispublicationiscopyrightundertheBerneConventionandtheUniversalCopyright Convention.Allrightsreserved.Apartfromanyfairdealingforthepurposesofresearch orprivatestudy,orcriticismorreview,aspermittedundertheCopyright,Designsand PatentsAct,1988,thispublicationmaybereproduced,storedortransmitted,inany formorbyanymeans,onlywiththepriorpermissioninwritingofthepublishers,orin thecaseofreprographicreproductioninaccordancewiththetermsoflicencesissued bytheCopyrightLicensingAgency.Inquiriesconcerningreproductionoutsidethose termsshouldbesenttothepublishersattheundermentionedaddress: TheInstitutionofEngineeringandTechnology MichaelFaradayHouse SixHillsWay,Stevenage Herts,SG12AY,UnitedKingdom www.theiet.org Whiletheauthorsandthepublishersbelievethattheinformationandguidancegivenin thisworkarecorrect,allpartiesmustrelyupontheirownskillandjudgementwhen makinguseofthem.Neithertheauthorsnorthepublishersassumeanyliabilityto anyoneforanylossordamagecausedbyanyerrororomissioninthework,whether sucherrororomissionistheresultofnegligenceoranyothercause.Anyandallsuch liabilityisdisclaimed. Themoralrightsoftheauthorstobeidentifiedasauthorsofthisworkhavebeen assertedbyhiminaccordancewiththeCopyright,DesignsandPatentsAct1988. BritishLibraryCataloguinginPublicationData Flexiblerobotmanipulators:modelling,simulationandcontrol.-(IETcontrolseries) 1.Manipulators(Mechanism)2.Manipulators(Mechanism)-Automaticcontrol I.Tokhi,M.O.II.Azad,AbulIII.InstitutionofEngineeringandTechnology 629.8’92 ISBN978-0-86341-448-0 TypesetinIndiabyNewgenImagingSystems(P)Ltd,Chennai PrintedintheUKbyAthenaeumPressLtd,Gateshead,Tyne&Wear Abbreviations AB Articulatedbody ACC Adaptivecompositecontroller ACU Armcomputerunit A/D Analogue/digital ADAM Aerospacedual-armflexiblemanipulator AMM Assumedmodesmethod ANN Artificialneuralnetwork ARMAX Autoregressivemovingaveragewithexogeneousinputs ARX Autoregressivewithexogenousinputs AVC Activevibrationcontrol BC Boundarycondition CACE Computeraidedcontrolengineering CCD Chargecoupleddevice CDT Contactdynamicstoolkit CLIK Closed-loopinversekinematics CMFC Centralisedmodel-freecontroller CMM Coordinatemeasuringmachine CI Compositeinertia CRB Compositerigidbody CSA CanadianSpaceAgency D/A Digital/analogue DFM Duisburgflexiblemanipulator DMFC Decentralisedmodel-freecontroller DNA DirectNyquistarray DOF Degreeoffreedom DSP Digitalsignalprocessing EAP Electroactivepolymer EBRC Energy-basedrobustcontroller ERLS Equivalentrigidlinksystem EVA Extravehicularactivity FD Finitedifference FE Finiteelement xxii Flexiblerobotmanipulators FMA Forcemomentaccommodation FMS Flexiblemanipulatorsystem FRF Frequencyresponsefunction GA Geneticalgorithm GOCF Generalizedobservabilitycanonicalform GUI Graphicaluserinterface HC Hardcomputing HLS Hardware-in-the-loopsimulation IIR Infiniteimpulseresponse IMSC Independentmodalspacecontrol INA InverseNyquistarray I/O Input/output ISS InternationalSpaceStation ISTE Integralsquaredtimederror JBC Joint-basedcollocated LED Light-emittingdiode LHP Lefthalfofs-plane LMS Leastmeansquares LPDC Localproportional,derivativecontrol LQ Linearquadratic LQG LinearquadraticGaussian LQR Linearquadraticregulator LRMS Long-reachmanipulatorsystem MAM Manualaugmentedmode MBS Mobilebasesystem MDR MacDonaldDettwilerSpaceandAdvancedRoboticsLtd. MDSF Manipulatordevelopmentandsimulationfacility MF Membershipfunction MIMO Multi-inputmulti-output MIQ Machineintelligencequotient MLFM Multi-linkflexiblemanipulator MLP Multi-layeredperceptron MNN Modularneuralnetwork MOTS MSSoperationandtrainingsimulator MPIPD MultivariablePI–PD MPO Modelpredictedoutput MPP Multivariablepole-placement MRO MSSroboticsoperator MSL MechatronicSimulinklibrary MSS Mobileservicingsystem MTF Matrixtransferfunction NARMAX Non-linearautoregressivemovingaveragewithexogeneousinputs NARX Non-linearautoregressivewithexogeneousinputs NB Negativebig NN Neuralnetwork Listofabbreviations xxiii NRT Non-real-time NS Negativesmall ODE Ordinarydifferentialequation OLS Orthogonalleastsquares OPDE Ordinarypartialdifferentialequation ORU Orbitalreplacementunit OSA One-step-ahead OTCM Orbitaltoolchange-outmechanism OTCME ORUtoolchange-outmechanismemulator PB Positivebig PD Proportional,derivative PDE Partialdifferentialequation PI Proportional,integral PID Proportional,integral,derivative PR Probabilisticreasoning PRBS Pseudo-randombinarysequence PS Positivesmall PSD Powerspectraldensity PZT LeadZirconateTitanate(piezoelectricceramicmaterial) RAC Resolved-accelerationcontrol RBF Radialbasisfunction RC Resistance–capacitance RFM Realflexiblemanipulator RFR Rigid–flexible–rigid RH Routh–Hurtwiz RHP Righthalfofs-plane RLS Recursiveleastsquares RMRC Resolved-motion-ratecontrol RMS Remotemanipulatorsystem RTAI Real-timeapplicationinterface RTW Real-timeworkshop RVDT Rotaryvariabledifferentialtransformer SC Softcomputing SCEFMAS SimulationandControlEnvironmentforFlexibleManipulator Systems SHM Sharedmemory SIM Dynamicsimulator SISO Single-inputsingle-output SLFM Single-linkflexiblemanipulator SM Symbolicmanipulation SMG Symbolicmodelgenerator SMP SystemformonitoringandmaintainingMSSroboticsoperators performance SMT STVFtest-bed SMT-SIM SMTdynamicsimulator xxiv Flexiblerobotmanipulators SPDM Specialpurposedextrousmanipulator SSRMS Spacestationremotemanipulatorsystem STVF SPDMtestverificationfacility TLFM Two-linkflexiblemanipulator USB UniversalSerialBus VR Visualrenderer VRM Virtualrigidmanipulator VSC Variablestructurecontrol ZN Ziegler–Nichols ZPETC Zerophaseerrortrackingcontroller ZV Zerovibration ZVD Zerovibrationandderivative 1D One-dimensional 1DOF One-degree-of-freedom 2D Two-dimensional 2DOF Two-degrees-of-freedom 3D Three-dimensional Notations a Thicknessofbeam b Widthofbeamandofsmartmaterial a,b,c Constants,parameters,coefficientsofpolynomials i i i a Absolutelinearaccelerationvectorofpointpexpressedinthebody p referenceframe a ,a Absolutelinearaccelerationvectorofthebodyreferenceframeand n k ofthecrosssectionreferenceframe,expressedinthebody referenceframe a Matrixelement ij A Cross-sectionalarea A Generalizedaccelerationvectorofbodyreferenceframen n A,B,C Systemstatematrices bm Biasonthejthneuronofthemthlayer j B ,(cid:2)B Abodyanditssurfaceinthereferenceundeformedconfiguration no no B∈R3 Magneticfluxdensityvector cM ∈R6×6 Symmetricmatrixofelasticstiffnesscoefficientsofthebeam cS ∈R6×6 Symmetricmatrixofelasticstiffnesscoefficientsofthesmartmaterial c Thicknessofuppersurfacesmartmaterialpatch 1 cM Stiffnessofthebeam 11 cS Stiffnessofthepiezoelectricmaterial 11 c Thicknessoflowersurfacesmartmaterialpatch 2 c Stiffnessperunitlengthofthebeam L1 c Stiffnessperunitlengthofthesmartmaterial L2 C,C Kineticenergy,capacitance n C Actuatorvoltageconstant a C Sensorvoltageconstant s d Constant d Componentsofthedisplacementgradientstrainvector i d Piezoelectricchargeconstant 31 D Dampingmatrix D Displacementgradientstrainvectoratabeamcrosssection xxvi Flexiblerobotmanipulators D(x,t)∈R3 Electricaldisplacementatlocationxandtimet e Error e˙ Changeinerror e ,e ,e Unitvectorsalongtheaxisofthecrosssectionreferenceframe, 1 2 3 expressedinthebodyreferenceframe E ,E ,E Unitvectorsalongtheaxisofthebodyreferenceframe,expressed 1 2 3 intheinertialreferenceframe E Youngmodulus E ActuatinglayerYoung’smodulus a E Systemkineticenergy K E Systempotentialenergy P E∈R3 Electricalfieldintensityvector E[.] Expectation f NaturalfrequencyinHz n f Forceperunitareaappliedonthesurfaceofabeam s fn,fnˆ Forceperunitareaappliedonthebaseandtipofabeam f(cid:2)B¯no Forceperunitareaappliedonthelateralfacesofabeam excludingtheedgesofthefirstandlastcrosssection F(t) Forcefunction F ,M Resultingexternalforceandmomentappliedattheoriginofthe n n bodyreferenceframe F(cid:2)B¯no ,M(cid:2)B¯no Resultingexternalforceandmomentperunitlengthappliedatthe originofthecrosssectionreferenceframe Fnˆ ,Mnˆ Resultingexternalforceandmomentappliedatthe originofthetipcrosssectionreferenceframe FM ∈R6 Simplifiedstressvectorofthebeam FS ∈R6 Simplifiedstressvectorofthesmartmaterial g Numberofgenerationingeneticalgorithms g Gravitationalaccelerationvectorexpressedinthebodyreference frame g Maximumnumberofgenerationingeneticalgorithms max g Piezoelectricstressconstant 31 G Green–Lagrangestraintensor G HalfYoungmodulus,G =E/2 G Green–Lagrangestrainvectoratabeamcrosssection b G(s) Transferfunction(continuous) h∈R6×3 Couplingcoefficientsmatrix h Couplingparameterperunitvolumeofthepiezoelectricmaterial 12 h Couplingparameterperunitlengthofthesmartmaterialrobot L H(x,t)∈R3 Magneticfieldintensityatlocationxandtimet H Depth/heightofarm/link H(jω) Frequencyresponsefunction Hnω ,Hnv RotationandtranslationJacobianmatricesofjointn i Constants,index,polynomial/modelorder Listofnotations xxvii I Areamomentofinertia I Identitymatrix I Hubinertia h Ip Inertiaassoci(cid:2)atedwithpay(cid:3)load I Totalinertia I +l3ρA/3 T h j Constants,index,polynomial/modelorder,unitimaginarynumber J Costfunction J Jexpressedinthebodyreferenceframe k J,I ,I Torsionalandbendinggeometricmomentsofinertia. 2 3 J ElasticrotationJacobianofthekthcrosssection Rek J Secondmomentofinertiatensorofrigidbodynexpressedinthe n bodyreferenceframe J ElastictranslationJacobianofthekthcrosssection Tk k Constant,index J Geometricalmomentsofinertiatensorofacrosssectionrelativeto k andexpressedinthecrosssectionreferenceframe K Controloutputscalingfactor c K Stiffnessmatrix K Vectorofbendingcurvaturesexpressedinthecrosssection k referenceframe K Elementalstiffnessmatrix n k Piezoelectricelectromagneticcouplingconstant 31 K ,K ,K ComponentsofK .K isthetorsionalstrain,andK andK arethe 1 2 3 k 1 2 3 bendingstrains K ,K,K Proportional,integral,derivativeparametersinPIDcontrol p i d K DerivativegaininPDcontrol v l Elementallength L Lengthofarm/link L Lagrangian g m TotalnumberofNNsinanMNN m Payloadatend-point 3 M Massmatrix M Elementalmassmatrix n M Massmatrixofflexiblebeamn en M (x,t) Localmomentinducedinbeambypiezoelectricactuatinglayer a M Payloadmass p m Elementsofmassmatrix ij n Constant,numberofelements,numberofmodes N Constant,numberofsamples N Coriollisandcentrifugalforcetermsofbodyn n N¯ Generalizedforcevectorcontemplatingnon-linearinertialforces, en linearelasticforcesandthegeneralizedexternalforcesappliedon theboundaryofthebeam N(x),N (x) Shapefunctionvector a O OriginofCartesiancoordinatesystem xxviiiFlexiblerobotmanipulators {O ,X Y Z } Inertialreferenceframe I I I I {O ,X Y Z } Bodynreferenceframe n n n n {O ,X Y Z } Beamcrosssectionk referenceframe k k k k OX Y LocalreferenceframewithaxisOX tangentialtothebeamat 1 1 1 thebase OX Y Fixedbaseframe 0 0 p Constant,pole P Crossoverprobability c P Mutationprobability m P Dynamiccrossoverprobability cd P Dynamicmutationprobability md P,P Potentialenergy n q Globalvectoroftheelasticgeneralizedcoordinatesofabeam en q Vectorofpurebendingdisplacementandpuretorsionangle Kn generalizedcoordinates qϕ Vectorofpuresheardisplacementgeneralisedcoordinates n qnω ,qnv Vectorsofangularandlinearpositionparametersofjointn Q(t),Q (t) Nodaldisplacementvector a Q(t) Totalchargeinsensinglayer q(x,t) Chargedistributioninsensinglayer q (t) Time-dependentgeneralizedcoordinates i r PositionvectorofpointPexpressedinthefixedbaseframe r Referenceinput r Positionvectorofbodyreferenceframenrelativetoandexpressed n intheinertialreferenceframe r Positionvectorofmaterialpointprelativetoandexpressedinthe p inertialreferenceframe rn−1,n Vectordescribingthepositionofbodynrelativetobodyn−1, expressedinbodyn−1referenceframe R Rotationmatrixfromtheinertialreferenceframetobody n nreferenceframe R Rotationmatrixfrombodynreferenceframetocrosssection ek k referenceframe Rn/n−1 Orthogonalrotationmatrixexpressingtherotationofbodynrelative tobodyn−1 s Laplacevariable S∈R6 Simplifiedstrainvector t Time(continuous) t, t Tangentvectortothebeamneutralfibreexpressedinthebody k referenceframe,andexpressedinthecrosssectionreferenceframe t ,t ,t Respectivethicknessesofpiezoelectricactuator,beamand a b c piezoelectricsensor T Totalelapsedtimeofthedesiredtrajectory T Generalizedcontrolforcevectoratjointn n u Plantinput,controloutput

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.