VACCINES crossm Using Data from Macaques To Predict D o w Gamma Interferon Responses after n lo Mycobacterium bovis BCG Vaccination in a d e d Humans: a Proof-of-Concept Study of f r o Immunostimulation/Immunodynamic m h t Modeling Methods tp : / / c v i. SophieJ.Rhodes,aCharlotteSarfas,bGwenanM.Knight,a,cAndrewWhite,b a s AnsarA.Pathan,dHelenMcShane,eThomasG.Evans,f HelenFletcher,g m . SallySharpe,bRichardG.Whitea o r g TBModellingGroup,CMMID,TBCentre,LondonSchoolofHygieneandTropicalMedicine,London,United / Kingdoma;PublicHealthEngland,PortonDown,UnitedKingdomb;ImperialCollege,London,United o n Kingdomc;CollegeofHealthandLifeSciences,DepartmentofLifeSciences,BrunelUniversity,London,United J Kingdomd;TheJennerInstitute,UniversityofOxford,Oxford,UnitedKingdome;TomegaVax,Portland,Oregon, a n USAf;ImmunologyandInfectionDepartment,LondonSchoolofHygieneandTropicalMedicine,London, u a UnitedKingdomg r y 8 ABSTRACT Macaques play a central role in the development of human tuberculosis , 2 (TB) vaccines. Immune and challenge responses differ across macaque and human Received14November2016 Returnedfor 0 subpopulations.Weusednovelimmunostimulation/immunodynamicmodelingmethods modification2December2016 Accepted4 18 January2017 inaproof-of-conceptstudytodeterminewhichmacaquesubpopulationsbestpredicted b Acceptedmanuscriptpostedonline11 y immune responses in different human subpopulations. Data on gamma interferon (IFN- January2017 L (cid:2))-secreting CD4(cid:2) T cells over time after recent Mycobacterium bovis BCG vaccination CitationRhodesSJ,SarfasC,KnightGM,WhiteA, on were available for 55 humans and 81 macaques. Human population covariates were PathanAA,McShaneH,EvansTG,FletcherH, do SharpeS,WhiteRG.2017.Usingdatafrom n baselineBCGvaccinationstatus,timesinceBCGvaccination,gender,andthemonocyte/ macaquestopredictgammainterferon S lymphocytecellcountratio.Themacaquepopulationcovariatewasthecolonyoforigin. responsesafterMycobacteriumbovisBCG c h Atwo-compartmentmathematicalmodeldescribingthedynamicsoftheIFN-(cid:2)Tcellre- vaccinationinhumans:aproof-of-conceptstudy o ofimmunostimulation/immunodynamic o sponseafterBCGvaccinationwascalibratedtothesedatausingnonlinearmixed-effects modelingmethods.ClinVaccineImmunol24: l o methods.Themodelwascalibratedtomacaqueandhumandataseparately.Theassoci- e00525-16.https://doi.org/10.1128/CVI.00525-16. f H ation between subpopulations and the BCG immune response in each species was EditorHeleneF.Rosenberg,IIS/LAD/NIAID/NIH y g assessed. The macaque subpopulations that best predicted immune responses in Copyright©2017Rhodesetal.Thisisan ie different human subpopulations were identified using Bayesian information crite- open-accessarticledistributedundertheterms n oftheCreativeCommonsAttribution4.0 e ria. We found that the macaque colony and the human baseline BCG status were Internationallicense. & significantly (P (cid:3) 0.05) associated with the BCG-induced immune response. For AddresscorrespondencetoSophieJ.Rhodes, T r humans who were BCG naïve at baseline, Indonesian cynomolgus macaques and [email protected]. o p Indian rhesus macaques best predicted the immune response. For humans who S.J.R.andC.S.arejointfirstauthors.S.S.and ic R.G.W.arejointseniorauthors. a had already been BCG vaccinated at baseline, Mauritian cynomolgus macaques l M best predicted the immune response. This work suggests that the immune re- e sponses of different human populations may be best modeled by different ma- d ic caque colonies, and it demonstrates the potential utility of immunostimulation/ in e immunodynamic modeling to accelerate TB vaccine development. KEYWORDS nonhumanprimates,T-cellimmunity,bacillusCalmette-Guérin, interferons,mathematicalmodeling,tuberculosis,tuberculosisvaccines Tuberculosis(TB)diseaseremainsamajorglobalhealthproblem(1),andMycobac- terium tuberculosis bacillus Calmette-Guérin (BCG), the only licensed TB vaccine, exhibitsvariableefficacy(2,3).InordertoreachWHOTBcontrolgoals,anew,effective March2017 Volume24 Issue3 e00525-16 ClinicalandVaccineImmunology cvi.asm.org 1 Rhodesetal. ClinicalandVaccineImmunology vaccine is vital (4). Animal models are used in almost every aspect of vaccine devel- opment,includinghelpingtounderstandthetransmissiondynamicsofthediseaseand theimmunogenicityandefficacyofvaccines(5).Theyarethereforeavitalandefficient toolinvaccinedevelopment(6).InpreclinicalTBvaccineresearch,nonhumanprimates (NHPs)areavaluableanimalmodel(7,8)andaregeneticallyandphysiologicallymore similartohumansthansmallanimalswithrespecttoTBdiseaseandimmuneresponse D o (7,9). w Historically,rhesus(Macacamulatta)1(0)andcynomolgus(Macacafascicularis)1(1) n lo macaque species have been used as the primary NHP models in TB vaccine research a d (12–14).BothspecieshavebeenshowntorespondtoBCGvaccination,whichaffords e d them partial protection from TB (15–19); however, it has been shown that the same f r experimentalconditions(infectionwithMycobacteriumtuberculosisfollowingvaccina- o m tion or a vaccine immune response) may lead to divergent outcomes for the two h species(7,20–22).Furthermore,thecolony(countryoforigin)ofmacaque,evenwithin tt p thesamespecies,hasbeenshowntoaffectthelevelofprotectionagainstinfectionand : / / thelevelofresponseaftervaccination.Forexample,differinglevelsofprotectionhave cv beenobservedforChineseandMauritiancynomolgusmacaques:Mauritiancynomol- i.a s gus macaques developed end-stage progressive TB in 7 weeks, while Chinese cyno- m molgusmacaquesremainedhealthypasttheendofthestudy(12weeks)(23). .o r These differences suggest that the immune responses of different human popula- g / tions(e.g.,thosewithpreviousBCGvaccinationorthosewhoareBCGnaïve)maybe o n best modeled by different macaque colonies. In 2014, the Bill and Melinda Gates J a FoundationadoptedanewstrategyfortheselectionofnewTBvaccinecandidatesfor n u clinicaltestingbasedonimmuneresponseandchallengeresultsinNHPs(24).There- a r fore,inordertoincreasethelikelihoodofdevelopinganeffectivevaccine,itiscritical y 8 toidentifyandunderstanddifferencesbetweenmacaquepopulations. , HerewefocusonestablishingthemostrepresentativeNHPmodelformodelingthe 2 0 gamma interferon (IFN-(cid:2)) immune responses of adult humans in the UK following 1 8 recentBCGvaccination,asoneexampleofthepredictionofvaccineimmuneresponses b y inhumansfromamacaqueanimalmodel. L Forthispurpose,weconductaproof-of-conceptstudytoevaluatethepotentialuse o n of novel immunostimulation/immunodynamic (IS/ID) modeling methods in vaccine d o immune response translation between species. A mechanistic mathematically based n S approach is used to quantify the dynamics of the immune response. By building the c h mathematicalmodelsonthebasisofquantitativeimmunologicaldata,itispossibleto o o describe how these mechanisms may differ within and between species and to draw l o quantitative comparisons. Such modeling techniques are commonly used in drug f H development (pharmacokinetic/pharmacodynamic modeling) to translate drug re- y sponsesbetweenspecies(25–27)buthaveyettobeusedinvaccinedevelopment. g ie First, we develop a model of IFN-(cid:2)-producing CD4(cid:2) T cell dynamics after BCG n e vaccinationandassessthesuitabilityofthemodelstructureforpredictingresponsesby & calibratingthemodeltothedata(analysis1).Weinvestigatetheimpactofthehuman T r and macaque population covariates to explain the within-population variation in o p responses,whichourpreviousanalysisonhumans(28)showedcanhaveasubstantial ic a impact on the magnitude of the response (analysis 2). We then test which calibrated l macaquemodelsbestpredicthumanIFN-(cid:2)responses(analysis3).Finally,weusethe M e calibrated mathematical models for macaque and human subpopulations to predict d ic thedynamicsoftheconstituentTcellpopulationsovertime(analysis4). in e RESULTS Analysis 1. Calibration of the model to IFN-(cid:2)data and exploration of model predictionsformacaquesandhumansseparately.Ourmathematicalmodelrepre- sentingtheimmuneresponsedynamicsoftwoCD4(cid:2)TcellpopulationssecretingIFN-(cid:2) isdiagramedinFig.1.Theestimatedparametervaluesforbothmacaquesandhumans canbefoundinTable1.Thevisualpredictivecheck(VPC)plotsinFig.2showthatthe ranges for macaques and humans in the model simulation cover the empirical data, March2017 Volume24 Issue3 e00525-16 cvi.asm.org 2 PredictingBCGIFN-(cid:2)ResponsesinHumansfromMacaques ClinicalandVaccineImmunology D o w n lo a d e d f r o m h t t p : / / c v i. a s m . o r g / FIG1(A)SchematicofthemathematicalmodelrepresentingtheimmuneresponsedynamicsoftwoCD4(cid:2)Tcellpopulationssecreting o n IFN-(cid:2).(B)Depictionofthechangesintherecruitmentrateoftransitionaleffectormemorycells((cid:3))overtime.(C)Keymodelparameters. J Equationsmaybefoundinthesupplementalmaterial. a n u a r y indicating that our model yields a good representation of the empirical data. Further 8 , diagnostic plots and model prediction plots can be found in Fig. S3 to S7 in the 2 0 supplementalmaterial. 1 8 Analysis2.Populationcovariateimpactonwithin-populationvariationinmodel b y parameterestimates.Wefoundtwocovariatestobeimportant:stratifyingmacaques L bycolonyandhumansbybaselineBCGstatusreducedthewithin-populationvariation o n in the initial transitional effector memory cell count (TEM ) for macaques, TEM for d 0 0 o humans,andthehumangammaprobabilitydensityfunction(PDF)multiplierandscale n S parameters(parametersLandh)(Table1;seealsoTablesS7toS13andFig.S8toS12 c h inthesupplementalmaterial).TheVPCandfurtherdiagnosticplotsforthesubpopu- o o lationmodelsshowthatthemodeldescribesthedataadequately(seeFig.S13toS18 l o in the supplemental material). Accounting for the population covariates reduced the f H Bayesianinformationcriterion(BIC)valuesignificantly,by73,forhumansfromthatin y analysis1(BICvalues,2,779inanalysis1and2,706inanalysis2[Table1])anddecreased g ie itby2formacaques(BICvalues,7,253inanalysis1and7,251inanalysis2[Table1]). n e The model-predicted total mean number of IFN-(cid:2)-secreting cells (transitional effector & memory [TEM] cells plus central memory [CM] cells) over time is shown inFig. 3 as a T visualassessmentofthegoodnessoffitofthemodeltothemeanempiricaldata.Also, ro p Fig. S19 and S20 in the supplemental material show the 10th to 90th percentiles of ic a modelpredictionsafteraccountingforwithin-populationvariation. l M Analysis3.Whichmacaquesubpopulationsbestpredictedimmuneresponses e in different human subpopulations? The calibrated model for Indonesian cynomol- d ic gusmacaquesfromanalysis2providedthelowestBICvaluesforthehumanpopulation in thatwasBCGnaïveatbaseline(BCG:N),andthatforIndianrhesusmacaquesprovided e thesecondlowestBICvalue(1,357and1,391,respectively[Fig.4;seealsoFig.S20to S27 in the supplemental material]). The calibrated model for Mauritian cynomolgus macaques best represented the human population that had already been BCG vacci- natedpriortobaseline(BCG:Y)(BICvalue,1,608[Fig.4;alsoFig.S21toS28]). Analysis4.PredictednumbersofTEMandrestingCMcellsovertime.Figure5 showsthemodel-predictednumbersoftotal(transitionaleffectormemoryandcentral memory)cellssecretingIFN-(cid:2),overtime,forthemeanmacaqueandhumansubpop- March2017 Volume24 Issue3 e00525-16 cvi.asm.org 3 Rhodesetal. ClinicalandVaccineImmunology TABLE1Populationmeanparameterestimatesforanalyses1and2formacaquesandhumansa Macaques Humans All(analysis1) Covariates(analysis2) All(analysis1) Covariates(analysis2) Parameterorstatistic Value RSE(%) Subpop. Value RSE(%) Value RSE(%) Subpop. Value RSE(%) Parameter(unit) D Initialno.ofTEMcells(TEM0)(cells)(E) 20.7 29 Chi 0.29 39* 59.9 17 BCG:Y 149 15 o Maur 65.1 24 w Indo 23.2 41* BCG:N 30.6 14 n lo R:Ind 15.7 20 a GammaPDFcurvemultiplier(L)(scalar)(E) 1,170 13 Chi 617 43* 1,490 14 BCG:Y 3,240 14 d e Maur 1,460 28 d Indo 1,100 45* BCG:N 747 14 f r R:Ind 1,250 14 o m GammaPDFcurveshapeparameter(k)(scalar)(E) 3.31 5 Chi 4.3 11 1.45 9 1.55 16 Maur 3.15 10 h t Indo 3 20 tp R:Ind 3.53 6 :/ / GammaPDFcurvescaleparameter(h)(scalar)(E) 15 8 13.8 7 18.4 18 BCG:Y 21.7 24 c v BCG:N 15.2 34* i. a ITnEiMtialcenlol.teorfmCiMnalcemllosr(tCaMlit0y)r(acteells((cid:4))(F))(/day)(F) 00.1 00.1 00.083 00.083 sm TEM . ProportionofTEMcellsthatdie(p)(proportion)(F) 0.925 0.925 0.925 0.925 o r g Within-populationvariation(WPV)(%) / o InitialTEMcellpopulation(TEM ) 130 25 41 27 107 15 52 19 n 0 GammaPDFcurvemultiplier(L) 96 13 90 13 95 10 61 12 J a GammaPDFcurveshapeparameter(k) 24 24 23 24 25 28 32 33* n GammaPDFcurvescaleparameter(h) 19 21 21 20 58 25 43 37* u a r y Goodness-of-fitstatistics 8 (cid:4)2LL 7,209 7,183 2,738 2,653 , BIC 7,253 7,251 2,779 2,706 2 0 1 aFordetailsontheparameter-covariaterelationship,seethesupplementalmaterial.F,fixed;E,estimate;TEM,transitionaleffectormemory;CM,centralmemory;PDF, 8 probabilitydensityfunction;RSE,relativestandarderror;subpop.,subpopulation;Chi,Chinesecynomolgusmacaques;Maur,Mauritiancynomolgusmacaques;Indo, b Indonesiancynomolgusmacaques;R:Ind,Indianrhesusmacaques;BCG:Y,humanparticipantswhowereBCGvaccinatedatbaseline;BCG:N,humanparticipants y whowereBCGnaiveatbaseline;(cid:4)2LL,(cid:4)2loglikelihood;BIC,Bayesianinformationcriteria.RSEsof(cid:5)30%aremarkedwithasterisks. L o n d o ulationdata.Thesemodeldynamicspresentapredictionforthephenotypicbehavior n S ofCD4(cid:2)Tcellsandthewaysinwhichtheydifferbetweenspeciesandsubpopulations, c h whichcanbevalidatedexperimentally. o o l o DISCUSSION f H In our proof-of-concept study, we applied novel immunostimulation/immunody- y namic (IS/ID) modeling to BCG immune response data and found that the macaque g ie colonyandthehumanbaselineBCGstatusweresignificantly(P(cid:3)0.05)associatedwith n e theBCG-inducedIFN-(cid:2)immuneresponse.Nootherpopulationcovariatesweresignif- & icantlyassociated.ForbaselineBCG-naïvehumans,Indonesiancynomolgusmacaques T r and Indian rhesus macaques best predicted the immune response. For baseline BCG- o p vaccinated humans, Mauritian cynomolgus macaques best predicted the immune ic a response. l M Akeystrengthofthisproof-of-conceptstudywastheapplicationofmathematical e modelingtechniquestovaccinedatathatarerarelyexploredquantitatively.Weused d ic establishedrobustquantitativeandstatisticalframeworks(compartmentalmathemat- in ical models with nonlinear mixed-effects modeling [NLMEM] [29]) to explore the e complexbiologicaldynamics,givinganearlyexampleoftheutilityofIS/IDmodeling. Thebiologicaldataweusedwerestandardizedbetweenspecies,withrespecttotime points and laboratory techniques, which allowed a direct comparison of the immune responsestoBCGvaccination. Although our model was a highly simplified version of the complexities of the immunesystem(seethediscussioninthesupplementalmaterialforthemainassump- tions and their impact [Table S14]), analysis 1 showed that the model described the March2017 Volume24 Issue3 e00525-16 cvi.asm.org 4 PredictingBCGIFN-(cid:2)ResponsesinHumansfromMacaques ClinicalandVaccineImmunology D o w n lo a d e d f r o m h t t p : / / c v i. a s m . o r g / o n J a n u a r y 8 , 2 0 1 8 b y L o n d o n S c h o o FIG2VPCplotsshowingthenumberofIFN-(cid:2)SFUpermillionPMBC,bytime(days)forallmacaques(A)andallhumans(B). l o TheVPCplotassessestheappropriatenessoftheproposedmathematicalmodel(Fig.1)fordescribingtheempiricaldataby f comparingthedatasimulatedusingthemodel,thepopulationmeanparameters,andassociatedvariances(Table1)tothe H empiricaldatadistribution(seethesupplementalmaterialformoredetails).Bluepointsshowempiricaldata.Pinkregions y g representtherangesofthemediansofthesimulateddatafor500simulations.Blueregionsrepresenttherangesofthe90th ie and10thpercentilesofthesimulatedpopulationdata.Thegreenlineslinktheempiricalpercentiles(10th,50th,and90th). n Darkredregionsshowwheretheempiricaldatafalloutsidetherangesofthesimulatedpercentiles.Thelackofdarkred e regions (aside from cases in which data are variable between time points in macaques) indicates that our proposed & mathematicalmodel(Fig.1)adequatelyrepresentstheempiricaldata. T r o p ic a datawell.Themodelwasalsoagooddescriptionofthesubpopulationdatainanalysis l M 2.However,whenthemodelwascalibratedtosmallersubpopulationsizes(especially e fortheChineseandIndonesiancynomolgusmacaques),theestimatedmodelparam- d ic eters were more uncertain than for the larger populations (see the relative standard in error [RSE] values in Table 1). Access to larger data sets on these populations would e increase the certainty of the parameter estimates. Additionally, in analysis 2, our aim was to establish how population covariates affect the model parameters using a stepwiseadditionmethod.However,asWhittinghametal.pointout,thereareinherent drawbackswithsuchamethod,despiteitswidespreaduse(30). Bymodelingtherecruitmentrateoftransitionaleffectormemorycellsbythefunction (cid:3), we were able to represent the nonlinear stimulation of the CD4 T cell response following BCG vaccination, allowing comparison of the dynamics of the response March2017 Volume24 Issue3 e00525-16 cvi.asm.org 5 Rhodesetal. ClinicalandVaccineImmunology D o w n lo a d e d f r o m h t t p : / / c v i. a s m . o r g FIG3TotalnumberofTcellssecretingIFN-(cid:2)(thesumofthenumberoftransitionaleffectormemory / o cells and resting central memory cells) over time. Each point represents the mean of the data at a n particulartimepoint.Linesrepresentmodelpredictions.Modelpredictionsusetheestimatedsubpop- J ulationmodelparametersfromTable1forthefourmacaquecoloniesandthetwohumansubpopula- a n tionswithdifferentBCGstatuses.(Notethedifferencesinscalebetweenmacaquesandhumans.) u a r y 8 , between subpopulations. However, since the recruitment rate of transitional effector 2 0 memorycellswasnotbasedonbiologicaldataandwascharacterizedbyatheoretical 1 8 shape, it is difficult to make direct biological interpretations of the parameters. To b y incorporateamechanisticstimulationcurveinfuturework,dataonthecellsinvolved L inthestimulationresponsewouldberequired. o n Theresultsinthisanalysiswereconsistentwithpreviouswork,inwhichweapplied d o descriptivestatisticstothehumandata(28).Inthatstudy,menexperiencedahigher n S baseline IFN-(cid:2)response (P (cid:3) 0.1) than women. A similar pattern can be seen in the c h currentwork:themedianinitialnumberoftransitionaleffectormemorycells(TEM0)for o o menishigherthanthatofwomen(Fig.S8inthesupplementalmaterial).Additionally, l o the model in analysis 2 is consistent with our previous findings (28) for humans, in f H which immune responses were higher in magnitude and were sustained longer for y baselineBCG-vaccinatedhumansthanforbaselineBCG-naïvehumans.Therefore,our g ie results suggest that BCG revaccination provides a higher and more sustained IFN-(cid:2) n e responsethanprimaryvaccinationinhumans.Finally,ourresultssuggestthatthereare & differencesinBCGresponsebetweendifferentcoloniesofmacaques.Thisisconsistent T r withworkbyLangermansetal.,whoshowthatrhesusmacaquesexperienceahigher o p IFN-(cid:2) response 13 weeks after BCG vaccination than cynomolgus macaques (22), ic althoughthepotentialeffectofthecolonyonIFN-(cid:2)responsewasnothighlightedin al M thatwork.Differencesinresponsesacrossmacaquecolonieshavealsobeenfoundin e M.tuberculosischallengestudies:Sharpeetal.showedthattheAUC (areaunder d theconcentration-timecurveat12weeks)valuesforIFN-(cid:2)-secreting12CWDee4kTcellswere icin significantly higher for Indian rhesus macaques than for Indonesian cynomolgus (21). e AlthoughwedonotconsiderM.tuberculosischallengeinouranalysis,thesedifferences may be important to consider when one is selecting an NHP model for human mycobacterialimmuneresponse. OurresultsimplythatresponsesinIndonesiancynomolgusmacaques,followedby those in Indian rhesus macaques, most closely resembled the response in primary- vaccinatedhumansdeterminedbyenzyme-linkedimmunospot(ELISPOT)assays.How- ever,weapproachthisconclusionwithcaution,sincethesamplesizesofthemacaque March2017 Volume24 Issue3 e00525-16 cvi.asm.org 6 PredictingBCGIFN-(cid:2)ResponsesinHumansfromMacaques ClinicalandVaccineImmunology D o w n lo a d e d f r o m h t t p : / / c v i. a s m . o r g / o n J a n u a r y 8 , 2 0 1 8 b y L o n d o n S c h o o l o f H FIG4Meanimmuneresponsesofthefourmacaquecoloniesandofhumansubpopulationsthatwere y BCG vaccinated (BCG: Y) or BCG naïve (BCG: N) at baseline. Empirical data for human responses are g ie representedbyblackpoints(individualdata)andredtriangles(means).Linesshowmodelpredictions. n Thetablesshowtheresultsofassessmentsoftheabilityofthecalibratedmacaquecolonymathematical e model parameters (Table 1, analysis 2) to describe the data for the human BCG: Y and BCG: N & subpopulations.Bayesianinformationcriterion(BIC)valuesarelistedinrankedorder,fromlowestto T highest.AsterisksindicatethatalldifferencesinBICvaluesaresignificant(aBICvaluedifferenceof(cid:5)6 r o isconsideredsignificant[46]).cyn.,cynomolgus. p ic a l M colony subpopulations were variable. With these smaller sample sizes, model param- e eterization and validation are less reliable than for larger groups. More data on the d ic colonies with small sample sizes should be collected and remodeled to verify our in results. Nevertheless, the large sample size obtained for the Indian rhesus macaques e was collated over decades of experimentation. Conventional vaccine studies in ma- caques are often limited to 6 to 9 animals per group due to space and cost. These smallermacaqueexperimentsarethenusedtoinformclinicalvaccinetrials,makingour smallsamplesizesmorerepresentativeofcurrentvaccinedevelopmentthanthelarge rhesusmacaquedataset. ItshouldbenotedthatintermsofBCGvaccinationhistory,thebaselineBCG-naive humansubpopulationisthemostcomparabletoallofthemacaquesubpopulations. March2017 Volume24 Issue3 e00525-16 cvi.asm.org 7 Rhodesetal. ClinicalandVaccineImmunology D o w n lo a d e d f r o m h t t p : / / c v i. a s m . o r g / o n FIG5 MeanIFN-(cid:2)responsedata(blackpoints)andmodelpredictionsforthetotalnumberofTcells J a secretingIFN-(cid:2)(blacklines),thenumberoftransitionaleffectormemory(TEM)cells(greenlines),andthe n number of resting central memory (CM) cells (orange lines) over time. Model predictions use the u a estimatedsubpopulationmodelparametersfromTable1forthefourmacaquecoloniesandthetwo r y humansubpopulationswithdifferentBCGstatuses.(Notethedifferencesinscalebetweenmacaques 8 andhumans.) , 2 0 1 8 Mauritian cynomolgus macaques mounted the highest response to a primary BCG b y vaccination,andtherefore,theirdatamostcloselyresemblethoseforrevaccinationin L humans. However, it is apparent from Fig. 4 that the BCG-vaccinated humans experi- o n enced a considerably higher magnitude of responses than all of the macaque sub- d o populations (which were BCG naïve at baseline). This suggests that the immune n S response to an antigen encountered for the first time is lower and slower than the c h response induced to the same antigen on subsequent occasions (31). Our results o o thereforesuggestthatarevaccinatedmacaqueanimalmodelmaybemostappropriate l o for revaccinated humans. This should be considered in further IS/ID translational f H analysisbetweenmacaquesandhumans. y Inouranalyses,weconsideronlyaUK-basedhumanpopulation.Infutureevalua- g ie tions, an analysis similar to that presented here could be carried out on populations n e fromvariousgeographicallocations,sinceBCGresponseshavebeenshowntodifferby & geographic location (32). Other population covariates, such as age, may also be T r important(8).Additionally,thequestionofwhetherthisanalysiswillbeappropriatefor o p othercandidatevaccineswouldbenefitfromfurtherscrutiny. ic a Figure5exploresthedynamicsoftheconstituentTcellpopulationsandprovides l M insightsintohowandwhenmemorymaybedeveloped—animportantconsideration e in vaccine regimen design, i.e., the timing of revaccination and differences between d ic subpopulations.However,wedonotcurrentlyhavedatatosupportthesedynamics,so in future work could be undertaken using flow cytometry to characterize the relative e numbersofcomplexphenotypiccelltypesovertimeandthustoinformmodelsthat canprovideabetterunderstandingofT-celldynamics. Inthisanalysis,weusedsolelyIFN-(cid:2)asaproxyforBCGvaccineimmunogenicity(33) anddidnotconsiderBCGefficacymeasuresexplicitly.Weunderstandthatinorderto develop a vaccine, both immunogenicity and efficacy are vital considerations. There- fore,inpredictingwhichmacaquemodelbestrepresentsthehumanvaccineresponse, vaccine efficacy cannot be ignored. However, to incorporate efficacy would require March2017 Volume24 Issue3 e00525-16 cvi.asm.org 8 PredictingBCGIFN-(cid:2)ResponsesinHumansfromMacaques ClinicalandVaccineImmunology more-complexmodelsanddatathanthosewepresenthere.Asmoreimmunological information or functional parameters become available, IS/ID modeling methods will allow us to easily integrate new information, e.g., on cytokines, cells, or (for efficacy measures) bacterial counts. Thus, we will be able to make decisions on the best NHP modeltousebasedonamorecompletevaccineperformanceframework. Conclusion. This work suggests that the immune responses of different human D o subpopulations may be best modeled by different macaque colonies, and it demon- w stratesthepotentialutilityofimmunostimulation/immunodynamicmodelingtoaccel- n lo eratethedevelopmentofTBvaccines. a d e MATERIALSANDMETHODS d f Data.Data onthe numberofpurifiedproteinderivative (PPD)-stimulatedCD4(cid:2)Tcellssecreting ro IFN-(cid:2)(inspotformingunits[SFU]per1millionperipheralbloodmononuclearcells[PBMC]),measured m byanexvivoIFN-(cid:2)ELISPOTassay,wereavailablefor55humansand81macaques.BCGvaccinationwas h givenondayzero,andELISPOTmeasurementswereperformedupto140daysaftervaccination.The tt p detailsofthehumandatasetandlaboratorytechniqueshavebeenpublishedpreviously(28).Briefly, : / healthy UK volunteers aged 18 to 55 years, either with no history of BCG vaccination or previously /c immunizedwithBCG,weregiven100(cid:4)lofBCG,administeredintradermallyintheupperarm.Immune vi. responsestoBCGweremeasuredusinganIFN-(cid:2)ELISPOTassayatweeks1,4,8,and24.Fordemo- a s graphicsandlaboratorydetails,seethesupplementalmaterial(TableS1;Fig.S1).Allmacaquestudies m wereconductedinaccordancewiththeHomeOffice(UK)CodeofPracticefortheHousingandCareof .o AnimalsUsedinScientificProcedures(1989)andtheGuidelinesonPrimateAccommodation,Careand r g UseoftheNationalCommitteeforRefinement,ReductionandReplacement(NC3Rs),issuedinAugust / o 2006.AllanimalprocedureswereapprovedbythePublicHealthEngland,PortonDownEthicalReview n Committee, and were authorized under an appropriate UK Home Office project license. Vaccination, J samplecollectionprocedures,andimmunologicalmethodsaredescribedinfullinreferences19,23,34, a n and35).AllmacaquesweredemonstratedtobemycobacteriallynaïvepriortoBCGvaccinationandwere u betweentheagesof3and14years.Thehumanpopulationcovariateswerebaseline(beforevaccination a r attimezero)BCGvaccinationstatus(eitherBCGvaccinated[BCG:Y]orBCGnaïve[BCG:N]atbaseline), y 8 yearssinceBCGvaccination(groupedas1to9,10to19,or20to29years,or“never”),gender,and , monocyte-to-lymphocytecellcountratio(MLratio).Themacaquepopulationcovariatewasthecolony 2 0 oforigin(Indianrhesusmacaques;forcynomolgusmacaques,Chinese,Mauritian,orIndonesian[see 1 TableS2andFig.S2inthesupplementalmaterial]).Rhesusmacaquesandcynomolgusmacaquesofthe 8 Indonesian and Mauritian genotypes were obtained from established UK breeding colonies. Chinese b y cynomolgusmacaqueswereimportedfromaHomeOffice-approvedbreedingcolonyinChina. L MathematicalIS/IDmodel.Anordinarydifferential-equationmodelwasusedtodescribetheIFN-(cid:2) o response dynamics of two CD4(cid:2) T cell populations, transitional effector memory (36) and resting n d “central”memorycells,whichareshort-andlong-lived,respectively(37–39)(Fig.1).Briefly,cellswere o recruitedintothetransitionaleffectormemorycompartmentatrate(cid:3).Aproportion(p)oftransitional n effector memory cells underwent apoptosis at rate (cid:4) , and the remaining proportion (1 (cid:4) p) S TEM c transitionedtoacentralmemoryphenotype,wheretheystayedforthedurationofthemodelrun(170 h o days)(Fig.1).Centralmemorycellsarequiescentinthehostuntilstimulatedbyanantigen(31);however, o we considered them here to contribute to IFN-(cid:2)production, since the ELISPOT assay uses PPD to l o stimulate all potentially IFN-(cid:2)-secreting CD4(cid:2) T cells. To reflect this, the IFN-(cid:2)immune response f predictedbythemathematicalmodelwasthesumofthenumberoftransitionaleffectormemoryand H y centralmemorycellpopulationsovertime.Weassumedthatanynonzeroresponsesatbaselinewere g existingmemoryresponsesthathadimmediatelyrevertedtothetransitionaleffectormemorypheno- ie n typeinthepresenceofanantigen.Therefore,theinitialtransitionaleffectormemorypopulation(TEM) 0 e waspositiveforthosesubjects.Weassumedthattheincreasesinthenumberoftransitionaleffector & memoryandcentralmemorycellsdidnotoccurimmediatelyaftervaccinationbutgraduallyincreased T overtimeduetoimmuneprocessessuchasvaccineantigentraffickingandpresentation(31,40).This r o increase then subsided, as T cell stimulation was assumed not to last indefinitely (31, 40–43). The p recruitmentoftransitionaleffectormemorycellsovertimewascontrolledinthemodelusingthere- ic cruitmentrate(cid:3),whichwasapeakedcurvespecifiedusingagammaprobabilitydensityfunction(PDF) al distributionwithparametersL,k,andh(Fig.1). M Analyses. (i) Analysis 1. Calibration of the model to IFN-(cid:2)data and exploration of model e d predictions for macaques and humans separately. In analysis 1, the model was calibrated to the ic macaqueandhumandataseparatelytoquantifythedynamicsoftheIFN-(cid:2)responseforeachspecies. in Todothis,threeparameters(thecomponentsoffunction(cid:3):L,k,andh[Fig.1])andTEM,theinitial e 0 numberoftransitionaleffectormemorycells,wereestimatedusingtheestablishedmethodofnonlinear mixed effects modeling (NLMEM) (29) using the software Monolix v. 4.3.3 (44). Briefly, NLMEM uses maximumlikelihoodmethodstoestimatethemodelparametersthatbestdescribethepopulationmean responseandtheassociatedparametervariancewhichaccountsforthewithin-populationvariation(for moredetailsseereference45).Evaluationofthemodel’sabilitytodescribethedatawasconducted primarily by simulation-based, visual predictive check (VPC) plots (see the supplemental material for details);assessmentoftheprecisionoftheestimatedparametersusingtherelativestandarderror(RSE) and a goodness of fit measure (Bayesian Information Criteria [BIC]). A difference in BIC of (cid:5)6 was consideredasignificant(Pvalue(cid:3)0.05)effect(46)andaparameterRSEof(cid:3)30%wasconsidereda March2017 Volume24 Issue3 e00525-16 cvi.asm.org 9 Rhodesetal. ClinicalandVaccineImmunology well-estimatedparameter.Theproportionoftransitionaleffectormemorycellsthatdie(p)wasassumed tobe0.925,assupportedbyliterature(38)(Fig.1;Table1)andtheparametergoverningthemortality rateoftransitionaleffectormemorycells,(cid:4),wasfixedafterascenarioanalysiswasconducted(TableS3). E FurthertestsrequiredtoestablishtheNLMEMframeworkareoutlinedinTablesS4toS6. (ii)Analysis2.Populationcovariateimpactonwithin-populationvariationinmodelparameter estimates. In analysis 2, we explored whether population covariates (i.e., subpopulations, such as differentcolonies)couldreducethewithin-populationvariationoftheestimatedparametersfromthat D inanalysis1,andwethusestablishedsubpopulationmodelsformacaquesandhumansseparately.To o dothis,covariate-parameterrelationshipsweretestedandselectedbasedonaforward-additionstrategy w n and likelihood ratio test method (see the supplemental material for details). Once the appropriate lo covariate-parameterrelationshipwasfound,thesubpopulationmodelwascalibratedtothedataandthe a subpopulationparametersestimated.WeobservedthechangeintheBICvaluesandwithin-population d e variationofmodelparametersfromanalysis1toanalysis2asaresultofaccountingforthepopulation d covariates. f r (iii)Analysis3.Whichmacaquesubpopulationsbestpredictedimmuneresponsesindifferent o m human subpopulations? To evaluate which macaque subpopulations best predicted the immune responsesindifferenthumansubpopulations,estimatedparametersandparametervariancesfromthe h t macaquesubpopulationmodel(analysis2)werefittothehumandata(orhumansubpopulationdata tp : [analysis2]).Thesubpopulationofmacaquesthatbestdescribedthehumandatawasdefinedasthe // c modelwiththelowestBIC. v (iv) Analysis 4. Predicted numbers of TEM and resting CM cells over time. The calibrated i. a mathematical model was then used to predict the number of transitional effector memory (36) and s m restingcentralmemorycellsovertime.Thesedynamicswerenotmeasuredempirically. . o SUPPLEMENTALMATERIAL rg / Supplemental material for this article may be found at https://doi.org/10.1128/ o n CVI.00525-16. J a SUPPLEMENTALFILE1,PDFfile,3.6MB. n u a ACKNOWLEDGMENTS ry We thank our colleagues at INSERM (J. Guedj and F. Mentre), Paris, France, who 8 , providedtrainingonNLMEMmethods. 2 0 S.J.R.issupportedbyaLSHTMstudentshipfundedbyAeras.G.M.K.isfundedbythe 1 8 NationalInstituteforHealthResearchHealthProtectionResearchUnit(NIHRHPRU)in b y HealthcareAssociatedInfectionandAntimicrobialResistanceatImperialCollegeLon- L doninpartnershipwithPublicHealthEngland(PHE).Theviewsexpressedarethoseof o n theauthorsandnotnecessarilythoseoftheNHS,theNIHR,theDepartmentofHealth, d o orPublicHealthEngland.R.G.W.isfundedbytheUKMedicalResearchCouncil(MRC) n S and the UK Department for International Development (DFID) under the MRC/DFID c h Concordat agreement, which is also part of the EDCTP2 program supported by the o EuropeanUnion(MR/P002404/1),theBillandMelindaGatesFoundation(TBModelingand o l o Analysis Consortium: OPP1084276/OPP1135288, SA Modeling for Policy: OPP1110334, f CORTIS:OPP1137034,Vaccines:OPP1160830),andUNITAID(4214-LSHTM-Sept15;PO8477- H y 0-600). g ie Wedeclarenocompetingfinancialinterests. n e & T REFERENCES ro p 1. WHO.2015.Globaltuberculosisreport2015.WorldHealthOrganization, refining the use of animals in tuberculosis vaccine research. ALTEX ic Geneva,Switzerland. https://doi.org/10.14573/altex.1607281. a 2. MangtaniP,AbubakarI,AritiC,BeynonR,PimpinL,FinePE,Rodrigues 7. Flynn JL, Gideon HP, Mattila JT, Lin PL. 2015. Immunology studies in l M LC,SmithPG,LipmanM,WhitingPF,SterneJA.2014.ProtectionbyBCG non-human primate models of tuberculosis. Immunol Rev 264:60–73. e vaccine against tuberculosis: a systematic review of randomized https://doi.org/10.1111/imr.12258. d controlledtrials.ClinInfectDis58:470–480.https://doi.org/10.1093/ 8. McShane H, Williams A. 2014. A review of preclinical animal models ic cid/cit790. utilisedforTBvaccineevaluationinthecontextofrecenthumanefficacy in e 3. DyeC.2013.Makingwideruseoftheworld’smostwidelyusedvaccine: data. Tuberculosis (Edinb) 94:105–110. https://doi.org/10.1016/j.tube Bacille Calmette-Guerin revaccination reconsidered. J R Soc Interface .2013.11.003. 10:20130365.https://doi.org/10.1098/rsif.2013.0365. 9. Carlsson HE, Schapiro SJ, Farah I, Hau J. 2004. Use of primates in 4. DyeC,GlaziouP,FloydK,RaviglioneM.2013.Prospectsfortuberculosis research:aglobaloverview.AmJPrimatol63:225–237.https://doi.org/ elimination.AnnuRevPublicHealth34:271–286.https://doi.org/10.1146/ 10.1002/ajp.20054. annurev-publhealth-031912-114431. 10. Gormus BJ, Blanchard JL, Alvarez XH, Didier PJ. 2004. Evidence for a 5. AcostaA,NorazmiMN,Hernandez-PandoR,AlvarezN,BorreroR,Infante rhesus monkey model of asymptomatic tuberculosis. J Med Primatol JF,SarmientoME.2011.Theimportanceofanimalmodelsintubercu- 33:134–145.https://doi.org/10.1111/j.1600-0684.2004.00062.x. losisvaccinedevelopment.MalaysJMedSci18:5–12. 11. CapuanoSV,III,CroixDA,PawarS,ZinovikA,MyersA,LinPL,BisselS, 6. Tanner R, McShane H. 26 September 2016. Replacing, reducing and FuhrmanC,KleinE,FlynnJL.2003.ExperimentalMycobacteriumtuber- March2017 Volume24 Issue3 e00525-16 cvi.asm.org 10
Description: