Flapping wing actuation using resonant compliant mechanisms An insect-inspired design Flapping wing actuation using resonant compliant mechanisms An insect-inspired design PROEFSCHRIFT terverkrijgingvandegraadvandoctor aandeTechnischeUniversiteitDelft, opgezagvandeRectorMagnificusProf.ir.K.C.A.M.Luyben, voorzittervanhetCollegevoorPromoties, inhetopenbaarteverdedigenopdonderdag21oktober2010om12.30uur door CasparTitusBOLSMAN werktuigkundigingenieur geborenteZaanstad Ditproefschriftisgoedgekeurddoordepromotor: Prof.dr.ir.A.vanKeulen Copromotor: Dr.ir.J.F.L.Goosen Samenstellingpromotiecommissie: RectorMagnificus, voorzitter Prof.dr.ir.A.vanKeulen, TechnischeUniversiteitDelft,promotor Dr.ir.J.F.L.Goosen, TechnischeUniversiteitDelft,copromotor Prof.dr.ir.drs.H.Bijl, TechnischeUniversiteitDelft Prof.ir.R.H.MunnigSchmidt, TechnischeUniversiteitDelft Prof.dr.ir.J.L.Herder, UniversiteitTwente Prof.dr.ir.J.L.vanLeeuwen, WageningenUniversity Dr.ir. D.Lentink, WageningenUniversity ThisprojecthasbeenfundedbyTheDevelopmentLaboratories,NWOand AgentschapNLintheformofaCasimirgrant. Copyright(cid:2)c 2010byC.T.Bolsman Allrightsreserved. Nopartofthematerialprotectedbythiscopyrightnotice maybereproducedorutilizedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recordingorbyanyinformationstorage andretrievalsystem,withoutthepriorpermissionoftheauthor. ISBN 978-90-9025685-6 Authoremail: (cid:0)(cid:2)(cid:3)(cid:4)(cid:2)(cid:5)(cid:6)(cid:7)(cid:8)(cid:3)(cid:9)(cid:2)(cid:10)(cid:11)(cid:12)(cid:9)(cid:2)(cid:13)(cid:8)(cid:14)(cid:0)(cid:7)(cid:9) ForMarieke Summary Flapping wing actuation using resonant compliant mechanisms Aninsect-inspireddesign This thesis describes the analysis and design of the wing actuation mechanism for an insect inspired flapping-wing MAV Micro Air Vehicle. Insects are among nature’s most nimble flyers and are an abundant source of inspiration for the developmentofflapping-wing MAVs. Thehumanendeavortodesignand realize flapping wing flight at insect scales has increased in recent years. The focus of thisthesisisontheexploitationandapplicationofresonantprinciplestoachieve insect-like wingmovementpatterns. Theinsect thorax-wingsystemisinessence atunedresonantsystem. Insectsexploitresonancetoreducetheenergyrequired to realize the wing flapping motion and achieve large amplitude wing motion by resonant amplitude amplification. The application of resonant principles in a flapping-wing MAV is intended to achieve the same aspects. The insect wing movement can be divided into two parts; The first is the flapping motion and the second is the wing rotation or pitching motion. The research in this thesis is divided along these lines. The flapping-wing MAV body, which facilitates the flapping motion is designed separatelybut parallel to the wings, which facilitate thepitchingmotion. In order to achieve resonance a significantly flexible structure has to be in- corporatedintothedesignoftheflapping-wing MAV thorax. Various optionsare reviewedand anoptionbasedontheuseofbendingischosen. Theelasticstruc- ture used for the body of the flapping-wing MAV is a ring-type structure. Using theringinthissettinggivesmanyoptionsforbothwingattachmentandactuator placement. Theringiscoupledtothewingsbyacompliantamplificationmecha- nism which transformsand amplifies thering deflectioninto the large wing root rotation required for the wing flapping motion. The development of the struc- turesfollowsatwo-stepapproach. Thefirststepistheselectionoffourprototypes i ii SUMMARY used for determining the viability of the structures and proposed analysis meth- ods, multi-body dynamics models and finite element models. The second set of structuresisgearedtowardsapplicationleveldetailingandassuchmoreempha- sis is placed on reducing weight. After initial sizing, the structures are analyzed byfiniteelements(eigenvalueandtransientanalysis). Basedontheanalysis,the structureshavebeenbuilt,realizedandtested. Itappearedthatthestructuresare capableofsustaininglargeamplitudeflappingmotioninaresonantmanner. The division of the design of the structure allows for independent analysis of the wings. In insects, the wing pitching motion, which is of paramount impor- tance for efficient lift production, is predominantly passive in origin. An engi- neeringequivalentrequiresthepresenceofatunableelasticstructureinthewing roottofacilitatethepassivewingpitchingmotion. Asolutiontothisproblemhas been found by adding a simple elastic element in an existing, commonly used, wing design. The elastic element in the wing root is tuned by using a coupled quasi-steady aerodynamic and multi-body dynamics model. The reference used for the tuning is a simplified version of the wing kinematics portrayed by hawk- moths. Thewingsarerealizedandtestedexperimentallytoseewhetherthewings reflecttheperformancefoundintheanalysis. The ring-shaped thorax structure is combined with the wings to test reso- nant performance of the assembled structure. A test setup is built to quantify lift production. Lift istestedbysuspendingtheprototypeonaflexiblebeamand measuring changes in deflection when the model is actuated. Significant lift is producedusingthecurrentprototype,intheorderoftheweight ofthestructure withouttheactuator. Kinematicpatternspresentduringresonantactuationshow correcttimingofwingrotation. The present developments have led to greater insight in the exploitation of resonance for driving wings in flapping-wing MAVs. Ring-type structures are a valid starting point and yield promising results. Further developments lie in the selectionand tuning ofactuatorsand theincorporationofcontrolpossibilities in thedesign. CasparBolsman Contents Summary i 1 Introduction 1 1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 MicroAirVehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 TheAtalantaProject . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 InspirationfromNature . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5.1 Whyflappingflight? . . . . . . . . . . . . . . . . . . . . . . 4 1.5.2 Whyinsects? . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.7 Thesisstructureandoverview . . . . . . . . . . . . . . . . . . . . . 7 2 Insects 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Insectanatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Insectthoraxstructure . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Wings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Resonanceininsects . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Rigidbodydescription . . . . . . . . . . . . . . . . . . . . . 18 2.4.2 Bendingandtorsion . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 iii iv CONTENTS 2.5.1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Flapping Wing MAVs 27 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 Overviewofprojects . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2 TheLipcapoweredflapping-wingMAV . . . . . . . . . . . . 28 3.2.3 TheMFIproject . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.4 TheHarvardfly . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.5 ClappingwingMAVofinsectsize . . . . . . . . . . . . . . . 30 3.2.6 CaltechMicrobat . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.7 VanderbiltUniversity . . . . . . . . . . . . . . . . . . . . . . 31 3.2.8 GeorgiaTechEntomopter . . . . . . . . . . . . . . . . . . . 32 3.2.9 DelflyMicro . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.10 FW-MAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.11 Projectsforreproducingkinematics . . . . . . . . . . . . . . 34 3.2.12 Comparisonofactuationmechanisms . . . . . . . . . . . . 36 3.2.13 Wings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 Actuatorstypes . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 Actuatorselectioncriteria . . . . . . . . . . . . . . . . . . . 42 3.3.3 Actuatorcontrol . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.4 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.1 Controlinwings . . . . . . . . . . . . . . . . . . . . . . . . 48 3.5 Functionalmechanismrequirements . . . . . . . . . . . . . . . . . 49 4 Conceptual flapping-wing MAV thorax design 51 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Energystorage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.1 Deformationmode . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.2 Materialchoice . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3 Towardsanactuationmechanism . . . . . . . . . . . . . . . . . . . 54 4.4 Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4.1 Springlikestructures. . . . . . . . . . . . . . . . . . . . . . 56 4.4.2 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.5 Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.5.1 Simpleringbasedstructures. . . . . . . . . . . . . . . . . . 58 4.6 Reviewofconcepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.6.1 Comparisonofmechanisms . . . . . . . . . . . . . . . . . . 59 4.7 Extendedconcepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Description: