ebook img

Flapping wing actuation using resonant compliant mechanisms PDF

173 Pages·2010·4.99 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Flapping wing actuation using resonant compliant mechanisms

Flapping wing actuation using resonant compliant mechanisms An insect-inspired design Flapping wing actuation using resonant compliant mechanisms An insect-inspired design PROEFSCHRIFT terverkrijgingvandegraadvandoctor aandeTechnischeUniversiteitDelft, opgezagvandeRectorMagnificusProf.ir.K.C.A.M.Luyben, voorzittervanhetCollegevoorPromoties, inhetopenbaarteverdedigenopdonderdag21oktober2010om12.30uur door CasparTitusBOLSMAN werktuigkundigingenieur geborenteZaanstad Ditproefschriftisgoedgekeurddoordepromotor: Prof.dr.ir.A.vanKeulen Copromotor: Dr.ir.J.F.L.Goosen Samenstellingpromotiecommissie: RectorMagnificus, voorzitter Prof.dr.ir.A.vanKeulen, TechnischeUniversiteitDelft,promotor Dr.ir.J.F.L.Goosen, TechnischeUniversiteitDelft,copromotor Prof.dr.ir.drs.H.Bijl, TechnischeUniversiteitDelft Prof.ir.R.H.MunnigSchmidt, TechnischeUniversiteitDelft Prof.dr.ir.J.L.Herder, UniversiteitTwente Prof.dr.ir.J.L.vanLeeuwen, WageningenUniversity Dr.ir. D.Lentink, WageningenUniversity ThisprojecthasbeenfundedbyTheDevelopmentLaboratories,NWOand AgentschapNLintheformofaCasimirgrant. Copyright(cid:2)c 2010byC.T.Bolsman Allrightsreserved. Nopartofthematerialprotectedbythiscopyrightnotice maybereproducedorutilizedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recordingorbyanyinformationstorage andretrievalsystem,withoutthepriorpermissionoftheauthor. ISBN 978-90-9025685-6 Authoremail: (cid:0)(cid:2)(cid:3)(cid:4)(cid:2)(cid:5)(cid:6)(cid:7)(cid:8)(cid:3)(cid:9)(cid:2)(cid:10)(cid:11)(cid:12)(cid:9)(cid:2)(cid:13)(cid:8)(cid:14)(cid:0)(cid:7)(cid:9) ForMarieke Summary Flapping wing actuation using resonant compliant mechanisms Aninsect-inspireddesign This thesis describes the analysis and design of the wing actuation mechanism for an insect inspired flapping-wing MAV Micro Air Vehicle. Insects are among nature’s most nimble flyers and are an abundant source of inspiration for the developmentofflapping-wing MAVs. Thehumanendeavortodesignand realize flapping wing flight at insect scales has increased in recent years. The focus of thisthesisisontheexploitationandapplicationofresonantprinciplestoachieve insect-like wingmovementpatterns. Theinsect thorax-wingsystemisinessence atunedresonantsystem. Insectsexploitresonancetoreducetheenergyrequired to realize the wing flapping motion and achieve large amplitude wing motion by resonant amplitude amplification. The application of resonant principles in a flapping-wing MAV is intended to achieve the same aspects. The insect wing movement can be divided into two parts; The first is the flapping motion and the second is the wing rotation or pitching motion. The research in this thesis is divided along these lines. The flapping-wing MAV body, which facilitates the flapping motion is designed separatelybut parallel to the wings, which facilitate thepitchingmotion. In order to achieve resonance a significantly flexible structure has to be in- corporatedintothedesignoftheflapping-wing MAV thorax. Various optionsare reviewedand anoptionbasedontheuseofbendingischosen. Theelasticstruc- ture used for the body of the flapping-wing MAV is a ring-type structure. Using theringinthissettinggivesmanyoptionsforbothwingattachmentandactuator placement. Theringiscoupledtothewingsbyacompliantamplificationmecha- nism which transformsand amplifies thering deflectioninto the large wing root rotation required for the wing flapping motion. The development of the struc- turesfollowsatwo-stepapproach. Thefirststepistheselectionoffourprototypes i ii SUMMARY used for determining the viability of the structures and proposed analysis meth- ods, multi-body dynamics models and finite element models. The second set of structuresisgearedtowardsapplicationleveldetailingandassuchmoreempha- sis is placed on reducing weight. After initial sizing, the structures are analyzed byfiniteelements(eigenvalueandtransientanalysis). Basedontheanalysis,the structureshavebeenbuilt,realizedandtested. Itappearedthatthestructuresare capableofsustaininglargeamplitudeflappingmotioninaresonantmanner. The division of the design of the structure allows for independent analysis of the wings. In insects, the wing pitching motion, which is of paramount impor- tance for efficient lift production, is predominantly passive in origin. An engi- neeringequivalentrequiresthepresenceofatunableelasticstructureinthewing roottofacilitatethepassivewingpitchingmotion. Asolutiontothisproblemhas been found by adding a simple elastic element in an existing, commonly used, wing design. The elastic element in the wing root is tuned by using a coupled quasi-steady aerodynamic and multi-body dynamics model. The reference used for the tuning is a simplified version of the wing kinematics portrayed by hawk- moths. Thewingsarerealizedandtestedexperimentallytoseewhetherthewings reflecttheperformancefoundintheanalysis. The ring-shaped thorax structure is combined with the wings to test reso- nant performance of the assembled structure. A test setup is built to quantify lift production. Lift istestedbysuspendingtheprototypeonaflexiblebeamand measuring changes in deflection when the model is actuated. Significant lift is producedusingthecurrentprototype,intheorderoftheweight ofthestructure withouttheactuator. Kinematicpatternspresentduringresonantactuationshow correcttimingofwingrotation. The present developments have led to greater insight in the exploitation of resonance for driving wings in flapping-wing MAVs. Ring-type structures are a valid starting point and yield promising results. Further developments lie in the selectionand tuning ofactuatorsand theincorporationofcontrolpossibilities in thedesign. CasparBolsman Contents Summary i 1 Introduction 1 1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 MicroAirVehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 TheAtalantaProject . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 InspirationfromNature . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5.1 Whyflappingflight? . . . . . . . . . . . . . . . . . . . . . . 4 1.5.2 Whyinsects? . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.7 Thesisstructureandoverview . . . . . . . . . . . . . . . . . . . . . 7 2 Insects 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Insectanatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Insectthoraxstructure . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Wings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Resonanceininsects . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Rigidbodydescription . . . . . . . . . . . . . . . . . . . . . 18 2.4.2 Bendingandtorsion . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 iii iv CONTENTS 2.5.1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Flapping Wing MAVs 27 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 Overviewofprojects . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2 TheLipcapoweredflapping-wingMAV . . . . . . . . . . . . 28 3.2.3 TheMFIproject . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.4 TheHarvardfly . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.5 ClappingwingMAVofinsectsize . . . . . . . . . . . . . . . 30 3.2.6 CaltechMicrobat . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.7 VanderbiltUniversity . . . . . . . . . . . . . . . . . . . . . . 31 3.2.8 GeorgiaTechEntomopter . . . . . . . . . . . . . . . . . . . 32 3.2.9 DelflyMicro . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.10 FW-MAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.11 Projectsforreproducingkinematics . . . . . . . . . . . . . . 34 3.2.12 Comparisonofactuationmechanisms . . . . . . . . . . . . 36 3.2.13 Wings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 Actuatorstypes . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 Actuatorselectioncriteria . . . . . . . . . . . . . . . . . . . 42 3.3.3 Actuatorcontrol . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.4 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.1 Controlinwings . . . . . . . . . . . . . . . . . . . . . . . . 48 3.5 Functionalmechanismrequirements . . . . . . . . . . . . . . . . . 49 4 Conceptual flapping-wing MAV thorax design 51 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Energystorage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.1 Deformationmode . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.2 Materialchoice . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3 Towardsanactuationmechanism . . . . . . . . . . . . . . . . . . . 54 4.4 Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4.1 Springlikestructures. . . . . . . . . . . . . . . . . . . . . . 56 4.4.2 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.5 Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.5.1 Simpleringbasedstructures. . . . . . . . . . . . . . . . . . 58 4.6 Reviewofconcepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.6.1 Comparisonofmechanisms . . . . . . . . . . . . . . . . . . 59 4.7 Extendedconcepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Description:
this thesis is on the exploitation and application of resonant principles to example members of the orders Diptera and Hymenoptera, have a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.