ebook img

Flag Varieties PDF

315 Pages·2018·2.674 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Flag Varieties

Texts and Readings in Mathematics 53 V Lakshmibai Justin Brown Flag Varieties An Interplay of Geometry, Combinatorics, and Representation Theory Second Edition Texts and Readings in Mathematics Volume 53 Advisory Editor C. S. Seshadri, Chennai Mathematical Institute, Chennai Managing Editor Rajendra Bhatia, Indian Statistical Institute, New Delhi Editors Manindra Agrawal, Indian Institute of Technology, Kanpur V. Balaji, Chennai Mathematical Institute, Chennai R. B. Bapat, Indian Statistical Institute, New Delhi V. S. Borkar, Indian Institute of Technology, Mumbai T. R. Ramadas, Chennai Mathematical Institute, Chennai V. Srinivas, Tata Institute of Fundamental Research, Mumbai Technical Editor P. Vanchinathan, Vellore Institute of Technology, Chennai The Texts and Readings in Mathematics series publishes high-quality textbooks, research-level monographs, lecture notes and contributed volumes. Undergraduate and graduate students of mathematics, research scholars, and teachers would find this book series useful. The volumes are carefully written as teaching aids and highlight characteristic features of the theory. The books in this series are co-published with Hindustan Book Agency, New Delhi, India. More information about this series at http://www.springer.com/series/15141 V. Lakshmibai Justin Brown (cid:129) Flag Varieties An Interplay of Geometry, Combinatorics, and Representation Theory Second Edition 123 V.Lakshmibai JustinBrown Northeastern University Olivet NazareneUniversity Boston, MA, USA Bourbonnais, IL, USA ISSN 2366-8725 (electronic) TextsandReadings inMathematics ISBN978-981-13-1393-6 (eBook) https://doi.org/10.1007/978-981-13-1393-6 LibraryofCongressControlNumber:2018947748 Thisworkisaco-publicationwithHindustanBookAgency,NewDelhi,licensedforsaleinallcountries inelectronicformonly.SoldanddistributedinprintacrosstheworldbyHindustanBookAgency,P-19 GreenParkExtension,NewDelhi110016,India.ISBN:978-93-86279-70-5©HindustanBookAgency 2018. 1stedition:©HindustanBookAgency(lndia)2009 2ndedition:©SpringerNatureSingaporePteLtd.2018andHindustanBookAgency2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublishers,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublishers,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publishers nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publishers remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. partofSpringerNature Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore Preface This book provides an introduction to (cid:13)ag varieties and their Schubert subva- rieties. The book portrays (cid:13)ag varieties as an interplay of algebraic geometry, algebraic groups, combinatorics, and representation theory. Afterdiscussingtherepresentationtheoryof(cid:12)nitegroups,thepolynomial representations (in characteristic zero) of the general linear group are obtained by relating the representation theory of the general linear group to that of the symmetricgroup(usingSchur-Weylduality).SincetheLiealgebraofasemisim- ple algebraic group plays a crucial role in the structure theory of semisimple algebraic groups, the book discusses the structure theory and the representa- tion theory of complex semisimple Lie algebras. Since Bruhat decomposition is at the heart of the study of the (cid:13)ag variety, the book gives a quick treatment of the generalities on algebraic groups leading to the root system and Bruhat decomposition in reductive algebraic groups. The nucleus of this book is the geometry of the Grassmannian and (cid:13)ag varieties. A knowledge of Grassmannian and (cid:13)ag varieties is indispensable for anyprospectivegraduatestudentworkingintheareaofalgebraicgeometry.We hopethatthisbookwillserveasareferenceforbasicresultsonGrassmannian, (cid:13)ag, and Schubert varieties as well as the relationship between the geometric aspectsofthesevarietiesandtherepresentationtheoryofsemisimplealgebraic groups. The prerequisite for this book is some familiarity with commutative alge- bra,algebraicgeometry,andalgebraicgroups.Abasicreferencetocommutative algebra is [17], algebraic geometry [28], and algebraic groups [5, 36]. The basic results from commutative algebra and algebraic geometry are summarized in Chapter 1. We have mostly used standard notation and terminology and have triedtokeepnotationtoaminimum.Throughoutthebook,wehavenumbered theorems, lemmas, propositions etc., in order according to their chapter and section;forexample,3.2.4referstothefourthitemofthesecondsectioninthe third chapter. This book can be used for an introductory course on (cid:13)ag varieties. The materialcoveredinthisbookshouldprovideadequatepreparationforgraduate studentsandresearchersintheareaofalgebraicgeometryandalgebraicgroups. Fortheinterestedreader,wehaveincludedseveralexercisesattheendofalmost v vi Preface every chapter; most of these exercises can also be found in the standard texts on their respective subjects. Acknowledgments:V.LakshmibaithankstheorganizersK.Uhlenbeckand C. Terng of the Institute for Advanced Study Program for Women and Mathe- maticson\AlgebraicGeometryandGroupActions,"May2007,forinvitingher to give lectures on \Flag Variety," and also the Institute for Advanced Study for the hospitality extended to her during her stay there. J.BrownthanksallofthosewhoparticipatedintheFlagVarietiescourse at Northeastern University, speci(cid:12)cally K. Webster and M. Fries for their con- tributions and suggestions. He also thanks his wife, Jody, for her love and support. September 1, 2007 V. Lakshmibai Boston, MA, USA J. Brown Preface to the Second Edition In this second edition, we have added two recent results (from [42] and [32], respectively) on Schubert varieties in the Grassmannian. The (cid:12)rst result, whichhasbeenaddedasChapter15,givesafreeresolutionofcertainSchubert singularities. The second result, which has been added as Chapter 16, is about certain Levi subgroup actions on Schubert varieties in the Grassmannian and derivessomeinterestinggeometricandrepresentation-theoreticconsequences. Contents Preface v Introduction xiii 1 Preliminaries 1 1.1 Commutative Algebra . . . . . . . . . . . . . . . . . . . . . . 1 1.2 A(cid:14)ne Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Projective Varieties . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Schemes - A(cid:14)ne and Projective . . . . . . . . . . . . . . . . 10 1.5 The Scheme Spec(A). . . . . . . . . . . . . . . . . . . . . . . 12 1.6 The Scheme Proj(S) . . . . . . . . . . . . . . . . . . . . . . . 13 1.7 Sheaves of O -Modules . . . . . . . . . . . . . . . . . . . . . 14 X 1.8 Attributes of Varieties . . . . . . . . . . . . . . . . . . . . . . 18 2 Structure Theory of Semisimple Rings 21 2.1 Semisimple Modules . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Semisimple Rings . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Brauer Groups and Central Simple Algebras . . . . . . . . . 32 2.4 The Group Algebra, K[G] . . . . . . . . . . . . . . . . . . . . 34 2.5 The Center of K[G] . . . . . . . . . . . . . . . . . . . . . . . 35 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3 Representation Theory of Finite Groups 39 3.1 Representations of G . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Characters of Representations . . . . . . . . . . . . . . . . . 40 3.3 Ordinary Representations . . . . . . . . . . . . . . . . . . . . 43 3.4 Tensor Product of Representations . . . . . . . . . . . . . . . 44 3.5 Contragradient Representations . . . . . . . . . . . . . . . . 45 3.6 Restrictions and Inductions . . . . . . . . . . . . . . . . . . . 45 3.7 Character Group of G . . . . . . . . . . . . . . . . . . . . . . 47 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 vii viii Contents 4 Representation Theory of the Symmetric Group 49 4.1 The Symmetric Group S . . . . . . . . . . . . . . . . . . . . 49 n 4.2 Frobenius-Young Modules . . . . . . . . . . . . . . . . . . . . 54 4.3 Specht Modules . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.4 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.5 Proof of Theorem 4.3.7 . . . . . . . . . . . . . . . . . . . . . 63 4.6 Representation Theory of A . . . . . . . . . . . . . . . . . . 65 n Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5 Symmetric Polynomials 69 5.1 Notation and Motivation . . . . . . . . . . . . . . . . . . . . 69 5.2 Several Bases for S(n) . . . . . . . . . . . . . . . . . . . . . 70 5.3 Kostka Numbers & Determinantal Formulas . . . . . . . . . 71 5.4 Results on (cid:31) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 (cid:21) Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6 Schur-Weyl Duality and the Relationship Between Representations of S and GL (C) 79 d n 6.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2 Schur-Weyl Duality . . . . . . . . . . . . . . . . . . . . . . . 81 6.3 Characters of the Schur Modules . . . . . . . . . . . . . . . . 83 6.4 Schur Module Representations of SL (C) . . . . . . . . . . . 84 n 6.5 Representations of GL (C) . . . . . . . . . . . . . . . . . . . 85 n Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7 Structure Theory of Complex Semisimple Lie Algebras 89 7.1 Introduction to Semisimple Lie Algebras. . . . . . . . . . . . 89 7.2 The Exponential Map in Characteristic Zero . . . . . . . . . 91 7.3 Structure of Semisimple Lie Algebras . . . . . . . . . . . . . 91 7.4 Jordan Decomposition in Semisimple Lie Algebras . . . . . . 95 7.5 The Lie Algebra sl (C) . . . . . . . . . . . . . . . . . . . . . 96 n 7.6 Cartan Subalgebras . . . . . . . . . . . . . . . . . . . . . . . 97 7.7 Root Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.8 Structure Theory of sl (C) . . . . . . . . . . . . . . . . . . . 100 n Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8 Representation Theory of Complex Semisimple Lie Algebras 103 8.1 Representations of g . . . . . . . . . . . . . . . . . . . . . . . 103 8.2 Weight Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.3 Finite Dimensional Modules . . . . . . . . . . . . . . . . . . 109 8.4 Fundamental Weights . . . . . . . . . . . . . . . . . . . . . . 112 8.5 Dimension and Character Formulas . . . . . . . . . . . . . . 113 8.6 Irreducible sl (C)-Modules . . . . . . . . . . . . . . . . . . . 113 n Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Contents ix 9 Generalities on Algebraic Groups 115 9.1 Algebraic Groups and Their Lie Algebras . . . . . . . . . . . 115 9.2 The Tangent Space . . . . . . . . . . . . . . . . . . . . . . . 116 9.3 Jordan Decomposition in G . . . . . . . . . . . . . . . . . . . 117 9.4 Variety Structure on G=H . . . . . . . . . . . . . . . . . . . 121 9.5 The Flag Variety . . . . . . . . . . . . . . . . . . . . . . . . . 125 9.6 Structure of Connected Solvable Groups . . . . . . . . . . . . 126 9.7 Borel Fixed Point Theorem . . . . . . . . . . . . . . . . . . . 128 9.8 Variety of Borel Subgroups . . . . . . . . . . . . . . . . . . . 132 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 10 Structure Theory of Reductive Groups 135 10.1 Cartan Subgroups . . . . . . . . . . . . . . . . . . . . . . . . 135 10.2 The Weyl Group . . . . . . . . . . . . . . . . . . . . . . . . . 136 10.3 Regular and Singular Tori . . . . . . . . . . . . . . . . . . . . 137 10.4 Semisimple Rank 1. . . . . . . . . . . . . . . . . . . . . . . . 139 10.5 One Parameter Subgroups . . . . . . . . . . . . . . . . . . . 140 10.6 Reductive Groups . . . . . . . . . . . . . . . . . . . . . . . . 143 10.7 Almost Simple Groups. . . . . . . . . . . . . . . . . . . . . . 146 10.8 Schubert Varieties & Bruhat Decomposition . . . . . . . . . 147 10.9 Standard Parabolic Subgroups . . . . . . . . . . . . . . . . . 150 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 11 Representation Theory of Semisimple Algebraic Groups 153 11.1 Weight Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 153 11.2 Geometric Realization of V((cid:21)) . . . . . . . . . . . . . . . . . 157 12 Geometry of the Grassmannian, Flag and their Schubert Varieties via Standard Monomial Theory 165 12.1 Grassmannian Variety . . . . . . . . . . . . . . . . . . . . . . 165 12.2 G Identi(cid:12)ed with a Homogeneous Space . . . . . . . . . . 168 d;n 12.3 Schubert Varieties . . . . . . . . . . . . . . . . . . . . . . . . 169 12.4 Standard Monomials . . . . . . . . . . . . . . . . . . . . . . . 171 12.5 Equations De(cid:12)ning Schubert Varieties . . . . . . . . . . . . . 173 12.6 Unions of Schubert Varieties . . . . . . . . . . . . . . . . . . 174 12.7 Vanishing Theorems . . . . . . . . . . . . . . . . . . . . . . . 176 12.8 Results for F . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 13 Singular Locus of a Schubert Variety in the Flag Variety SL =B 187 n 13.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 13.2 Singular Loci of Schubert Varieties . . . . . . . . . . . . . . . 188 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.