ebook img

Fixed point theory for Lipschitzian-type mappings with applications PDF

373 Pages·2009·2.57 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fixed point theory for Lipschitzian-type mappings with applications

Fixed Point Theory for Lipschitzian-type Mappings with Applications Topological Fixed Point Theory and Its Applications VOLUME 6 Fixed Point Theory for Lipschitzian-type Mappings with Applications by Ravi P. Agarwal Florida Institute of Technology Melbourne, FL, USA Donal O’Regan National University of Ireland Galway, Ireland and D.R. Sahu Banaras Hindu University Varanasi, India 123 RaviP.Agarwal DonalO’Regan DepartmentofMathematicalSciences InstituteofMathematics FloridaInsituteofTechnology UniversityCollegeGalway Melbourne,FL32901USA NationalUniversityofIreland agarwal@fit.edu Galway,Ireland [email protected] D.R.Sahu DepartmentofMathematics FacultyofScience BanarasHinduUniversity Varanasi,India [email protected] ISBN978-0-387-75817-6 e-ISBN978-0-387-75818-3 DOI10.1007/978-0-387-75818-3 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber: 2009927662 AMSSubjectClassifications(2000):47H09,47H10 (cid:2)c 2009SpringerScience+BusinessMedia,LLC. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013,U.S.A.),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubjectto proprietaryrights. Printedonacid-freepaper. SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Dedicated to our daughters Sheba Agarwal Lorna Emily O’Regan Gargi Sahu Preface Over the past few decades, fixed point theory of Lipschitzian and non- Lipschitzian mappings has been developed into an important field of study in bothpureandappliedmathematics. Themainpurposeofthisbookistopresent manyofthebasictechniquesandresultsofthistheory. Ofcourse,notallaspects of this theory could be included in this exposition. The book contains eight chapters. The first chapter is devoted to some of the basic results of nonlinear functional analysis. The final section in this chapter deals with the classic results of fixed point theory. Our goal is to study nonlinear problems in Banach spaces. We remark here that it is hard to study these without the geometric properties of Banach spaces. As a result in Chapter 2, we discuss elements of convexity and smoothness of Banach spaces and properties of duality mappings. This chapter also includes many interest- ingresultsrelatedtoBanachlimits,metricprojectionmappings,andretraction mappings. In Chapter 3, we consider normal structure coefficient, weak normal structure coefficient, and related coefficients. This includes the most recent workintheliterature. Ourtreatment ofthemain subjectinthebookbeginsin Chapter 4. In this chapter, we consider the problem of existence of fixed points of Lipschitzian and non-Lipschitzian mappings in metric spaces. Chapter 5 is devoted to problems of existence of fixed points of nonexpansive, asympto- tically nonexpansive, pseudocontractive mappings in Banach spaces. Most of the results are discussed in infinite-dimensional Banach spaces. The theory of iteration processes for computing fixed points of nonexpansive, asympto- tically nonexpansive, pseudocontractive mappings is developed in Chapter 6. In Chapter 7, we prove strong convergence theorems for nonexpansive, pseudo- contractive, and asymptotically pseudocontractive mappings in Banach spaces. Finally in Chapter 8, we discuss several applicable problems arising in different fields. Eachchapterinthisbookcontainsabriefintroductiontodescribethetopic thatiscovered. Also,anexercisesectionisincludedineachchapter. Becausethe book is self-contained, the book should be of interest to graduate students and mathematicians interested in learning fundamental theorems about the theory of Lipschitzian and non-Lipschitzian mappings and fixed points. We wish to express our deepest appreciation to Professors Y. Alber, T. D. Benavides, J. S. Jung, W. A. Kirk, S. Prus, S. Reich, B. E. Rhoades, B. K. Sharma, W. Takahashi, H. K. Xu, and J. C. Yao for their encouragement and personal support. viii Preface FinallytheauthorsareverygratefultoMs.V.Damle,Ms.B.Marciaandthe staff from the Springer Publishers for their indefatigable cooperation, patience and understanding. R.P. Agarwal Donal O’Regan D.R. Sahu Contents Preface vii 1 Fundamentals 1 1.1 Topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Normed spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Dense set and separable space . . . . . . . . . . . . . . . . . . . . 20 1.4 Linear operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5 Space of bounded linear operators . . . . . . . . . . . . . . . . . 25 1.6 Hahn-Banach theorem and applications . . . . . . . . . . . . . . 28 1.7 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.8 Reflexivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.9 Weak topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.10 Continuity of mappings . . . . . . . . . . . . . . . . . . . . . . . 43 2 Convexity, Smoothness, and Duality Mappings 49 2.1 Strict convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.2 Uniform convexity . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.3 Modulus of convexity . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4 Duality mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.5 Convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.6 Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2.7 Modulus of smoothness . . . . . . . . . . . . . . . . . . . . . . . 94 2.8 Uniform smoothness . . . . . . . . . . . . . . . . . . . . . . . . . 98 2.9 Banach limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 2.10 Metric projection and retraction mappings . . . . . . . . . . . . . 115 3 Geometric Coefficients of Banach Spaces 127 3.1 Asymptotic centers and asymptotic radius . . . . . . . . . . . . . 127 3.2 The Opial and uniform Opial conditions . . . . . . . . . . . . . . 136 3.3 Normal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 3.4 Normal structure coefficient . . . . . . . . . . . . . . . . . . . . . 153 3.5 Weak normal structure coefficient . . . . . . . . . . . . . . . . . . 162 3.6 Maluta constant . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 3.7 GGLD property. . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 x Contents 4 Existence Theorems in Metric Spaces 175 4.1 Contraction mappings and their generalizations . . . . . . . . . . 175 4.2 Multivalued mappings . . . . . . . . . . . . . . . . . . . . . . . . 188 4.3 Convexity structure and fixed points . . . . . . . . . . . . . . . . 197 4.4 Normal structure coefficient and fixed points . . . . . . . . . . . 201 4.5 Lifschitz’s coefficient and fixed points. . . . . . . . . . . . . . . . 206 5 Existence Theorems in Banach Spaces 211 5.1 Non-self contraction mappings . . . . . . . . . . . . . . . . . . . 211 5.2 Nonexpansive mappings . . . . . . . . . . . . . . . . . . . . . . . 222 5.3 Multivalued nonexpansive mappings . . . . . . . . . . . . . . . . 237 5.4 Asymptotically nonexpansive mappings . . . . . . . . . . . . . . 243 5.5 Uniformly L-Lipschitzian mappings . . . . . . . . . . . . . . . . . 250 5.6 Non-Lipschitzian mappings . . . . . . . . . . . . . . . . . . . . . 259 5.7 Pseudocontractive mappings . . . . . . . . . . . . . . . . . . . . . 264 6 Approximation of Fixed Points 279 6.1 Basic properties and lemmas . . . . . . . . . . . . . . . . . . . . 279 6.2 Convergence of successive iterates . . . . . . . . . . . . . . . . . . 286 6.3 Mann iteration process . . . . . . . . . . . . . . . . . . . . . . . . 288 6.4 Nonexpansive and quasi-nonexpansive mappings . . . . . . . . . 292 6.5 The modified Mann iteration process . . . . . . . . . . . . . . . . 300 6.6 The Ishikawa iteration process . . . . . . . . . . . . . . . . . . . 303 6.7 The S-iteration process. . . . . . . . . . . . . . . . . . . . . . . . 307 7 Strong Convergence Theorems 315 7.1 Convergence of approximants of self-mappings. . . . . . . . . . . 315 7.2 Convergence of approximants of non-self mappings . . . . . . . . 324 7.3 Convergence of Halpern iteration process . . . . . . . . . . . . . 327 8 Applications of Fixed Point Theorems 333 8.1 Attractors of the IFS . . . . . . . . . . . . . . . . . . . . . . . . . 333 8.2 Best approximation theory. . . . . . . . . . . . . . . . . . . . . . 335 8.3 Solutions of operator equations . . . . . . . . . . . . . . . . . . . 336 8.4 Differential and integral equations . . . . . . . . . . . . . . . . . 339 8.5 Variational inequality . . . . . . . . . . . . . . . . . . . . . . . . 341 8.6 Variational inclusion problem . . . . . . . . . . . . . . . . . . . . 343 Appendix A 349 A.1 Basic inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 A.2 Partially ordered set . . . . . . . . . . . . . . . . . . . . . . . . . 350 A.3 Ultrapowers of Banach spaces . . . . . . . . . . . . . . . . . . . . 350 Bibliography 353 Index 365

Description:
In recent years, the fixed point theory of Lipschitzian-type mappings has rapidly grown into an important field of study in both pure and applied mathematics. It has become one of the most essential tools in nonlinear functional analysis. This self-contained book provides the first systematic presen
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.