FIXED-ENDPOINTOPTIMALCONTROLOFBILINEARENSEMBLESYSTEMS∗ SHUOWANG† AND JR-SHIN LI‡ Abstract. Optimal control ofbilinear systems has been awell-studied subject in the area ofmathematical control. However,techniquesforsolvingemergingoptimalcontrolproblemsinvolvinganensembleofstructurally identical bilinear systems are underdeveloped. In this work, we develop an iterative method to effectively and 6 systematicallysolvethesechallengingoptimalensemblecontrolproblems,inwhichthebilinearensemblesystem 1 is represented as a time-varying linear ensemble system at each iteration and the optimal ensemble control law 0 isthenobtainedbythesingularvalueexpansionoftheinput-to-state operatorthatdescribes thedynamicsofthe 2 linear ensemble system. Weexamine the convergence ofthe developed iterative procedure and pose optimality conditionsfortheconvergentsolution.Wealsoprovideexamplesofpracticalcontroldesignsinmagneticresonance n todemonstratetheapplicabilityandrobustnessofthedevelopediterativemethod. a J Keywords. Ensemblecontrol, iterative methods,sweepmethod,fixed-endpoint problems, bilinearsystems, 3 optimalityconditions,magneticresonance. 1 AMSsubjectclassifications. ] C 1. Introduction. Newly emerging fields in science and engineering, such as systems O neuroscience,synchronizationengineering,andquantumscienceandtechnology,giveriseto . h newclassesofoptimalcontrolproblemsthatinvolveunderactuatedmanipulationofindivid- t ualand collective behaviorof dynamicunits in a largeensemble. Representativeexamples a m include neural stimulation for alleviating the symptoms of neurological disorders such as Parkinson’sdisease,whereapopulationofneuronsinthebrainisaffectedbyasmallnumber [ ofelectrodes[1]; pulse designsforexcitingandtransportingquantumsystemsbetweende- 1 siredstates, whereanensembleofquantumsystemsisdrivenbyasingleormultiplepulses v inapulsesequence[2,3];andtheengineeringofdynamicalstructuresforcomplexoscillator 9 networks, where sequential patterns of a network of nonlinear rhythmic elements are cre- 2 3 atedandalteredbyamildglobalwaveform[4]. Solvingthesenontraditionalandlarge-scale 3 underactuatedcontrolproblemsrequiresthedevelopmentofsystematicandcomputationally 0 tractableandeffectivemethods. . 1 Amongtheseemergingcontrolproblems,inthispaper,wewillstudyfixed-endpointop- 0 timalcontrolproblemsinvolvingbilinearensemblesystems,whicharisefromthedomainof 6 quantumcontrol[5]andappearinavarietyofotherdifferentfields,suchascancerchemother- 1 apy[6] androbotics[7]. Thecontrolofbilinearsystemshasbeena well-studiedsubjectin : v theareaofmathematicalcontrol. FromPontryagin’smaximumprincipletospectralcolloca- i X tionmethods,awidevarietyoftheoreticalandcomputationalmethodshavebeendeveloped to solve optimal control problems of bilinear systems [8, 9]. In particular, the numerical r a methodsare in principlecategorizedinto direct, e.g., pseudospectralmethods[10, 11], and indirectapproaches,e.g.,indirecttranscriptionmethod[12]andshootingmethods[13]. Im- plementingtheseexistingnumericalmethodstosolveoptimalcontrolproblemsinvolvingan ensemble,i.e.,alargenumber(finitelyorinfinitelymany)oraparameterizedfamily,ofbilin- earsystemsmayencounterlowefficiency,slowconvergence,andinstabilityissues,because most of these methodsrely on suitable discretization of the continuous-timedynamicsinto alarge-scalenonlinearprogram(LSNLP).Inaddition,theglobalconstraintforsuchanop- ∗ThisworkwassupportedinpartbytheNationalScienceFoundationundertheawardsCMMI-1301148,CMMI- 1462796,andECCS-1509342. †DepartmentofElectricalandSystemsEngineering,WashingtonUniversity,St. Louis,Missouri,63130,USA ([email protected]). ‡DepartmentofElectricalandSystemsEngineering,WashingtonUniversity,St. Louis,Missouri,63130,USA ([email protected]).Questions,comments,orcorrectionstothisdocumentmaybedirectedtothisemailaddress. 1 2 S.WANGANDJ.-S.LI timalensemblecontrolproblem,inwhicheachindividualsystemreceivesthe samecontrol input,makesthediscretizedLSNLPveryrestrictiveandintractabletosolveoreventofinda feasiblesolution[14]. On the other hand, optimalcontrol problemsinvolving a linear system, or a linear en- semblesystem,areoftencomputationallytractableandanalyticallysolvableformanyspecial cases,suchasthelinearquadraticregulator(LQR)[15]andtheminimum-energycontrolof harmonicoscillatorensembles[16].Thissuggestsabypasstosolveoptimalcontrolproblems ofbilinearensemblesystemsthroughsolvingthatoflinearensemblesystemsandmotivates thedevelopmentoftheiterativemethodinthiswork.Thecentralideaistorepresentthebilin- earensemblesystemasalinearensemblesystemateachiteration,andthenfeasiblycalculate theoptimalcontrolandtrajectoryforeachiterationuntilaconvergentsolutionisfound.Itera- tivemethodshavebeenintroducedandadoptedtodealwithdiversecontroldesignproblems, including the free-endpointquadratic optimal control of bilinear systems [17] and optimal state trackingfornonlinearsystems[18], while the fixed-endpointproblemsalongwith the emergingproblemsthatinvolvecontrollingabilinearensemblesystemremainunexplored. Inthispaper,wecombinetheideaoftheaforementionediterativemethodwithourpre- viousworkonoptimalcontroloflinearensemblesystemstoconstructaniterativealgorithm forsolvingoptimalcontrolproblemsinvolvingatime-invariantbilinearensemblesystemof theform, d X(t,b )=A(b )X(t,b )+B(b )u(t)+ (cid:229)m u(t)B(b ) X(t,b ), i i dt i=1 (cid:16) (cid:17) whereX =(x ,...,x )T ∈M⊂Rn denotesthe state, b ∈K ⊂Rd with K compactand d a 1 n positiveinteger,u(t)=(u (t),...,u (t))T ∈Rmisthecontrol,andthematricesA(b )∈Rn×n, 1 m B(b )∈Rn×m,andB(b )∈Rn×n,i=1,...,m,forb ∈K. i This paper is structuredas follows. In the nextsection, we presentthe developediter- ative method for fixed-endpointoptimal control of a time-invariant bilinear system, where weintroduceasweepmethodthataccountsfortheterminalconditionbasedonthenotionof flowmappingfromtheoptimalcontroltheory. InSection3,weexaminetheconvergenceof theiterativemethodusingthefixed-pointtheorem. InSection4, weproposetheconditions forglobaloptimalityoftheconvergentsolution.Then,inSection5,weextendthedeveloped iterativemethodtosolveoptimalcontrolproblemsinvolvingbilinearensemblesystemsand showtheconvergenceofthemethod. Finally,examplesandsimulationsofpracticalcontrol designproblemsareillustrated in Section6 to demonstratethe applicabilityandrobustness ofthedevelopediterativeprocedure. 2. Iterativemethodforoptimalcontrolofbilinearsystems. Westartwithconsider- ingafixed-endpoint,finite-time,quadraticoptimalcontrolprobleminvolvingatime-invariant bilinearsystemoftheform min J= 1 tf xT(t)Qx(t)+uT(t)Ru(t) dt, 2 0 Z h m i (cid:229) (P1) s.t. x˙=Ax+Bu+ uB x, i i i=1 h i x(0)=x , x(t )=x , 0 f f wherex(t)∈Rnisthestateandu(t)∈Rmisthecontrol;A∈Rn×n,B ∈Rn×n,andB∈Rn×m i areconstantmatrices;R∈Rm×m≻0ispositivedefiniteandQ∈Rn×n(cid:23)0ispositivesemi- definite; and x ,x ∈Rn are the initial andthe desired terminalstate, respectively. We first 0 f FIXED-ENDPOINTCONTROLFORBILINEARENSEMBLES 3 representthetime-invariantbilinearsystemin(P1)asatime-varyinglinearsystem, n (cid:229) (2.1) x˙(t)=Ax+Bu+ x (t)N u, j j "j=1 # inwhichwewritethebilinearterm (cid:229) m uB x= (cid:229) n x N uwithx the jthelementofx, i=1 i i j=1 j j j N ∈Rn×m for j=i,...,n,andu=(u ,...,u )T ∈Rm. Then,wesolvethisoptimalcontrol j (cid:0) 1 m(cid:1) (cid:0) (cid:1) problembyPontryagin’smaximumprinciple.TheHamiltonianofthisproblemis (2.2) H(x,u,l )= 1(xTQx+uTRu)+l T Ax+ B+((cid:229) n x N ) u , j j 2 j=1 n h i o wherel (t)∈Rnistheco-statevector.Theoptimalcontrolisthenobtainedbythenecessary condition, ¶ H =0,givenby ¶ u (2.3) u∗=−R−1 B+(cid:229) n x N Tl , j j j=1 (cid:16) (cid:17) andtheoptimaltrajectoryofthestatexandtheco-statel satisfy,fort∈[0,t ], f n n (2.4) x˙ = Ax − B+(cid:229) x N R−1 B+(cid:229) x N Tl , i i j j j j i j=1 j=1 (cid:2) (cid:3) h(cid:0) (cid:1) (cid:0) (cid:1) i n n (2.5) l˙ =− Qx − ATl +l T NR−1 B+(cid:229) x N T+ B+(cid:229) x N R−1NT l i i i i j j j j i j=1 j=1 (cid:2) (cid:3) (cid:2) (cid:3) n (cid:0) (cid:1) (cid:0) (cid:1) o withtheboundaryconditionsx(0)=x andx(t )=x ,wherex,l and[·],i=1,...,n,are 0 f f i i i theith componentoftheassociatedvectors.Bythefollowingchangeofvariables, n n (2.6) A˜ =A − (N R−1 B+(cid:229) x N T+ B+(cid:229) x N )R−1NT l , ij ij j j j j j j i j=1 j=1 h (cid:0) (cid:1) (cid:0) (cid:1) i n n (2.7) B˜R−1B˜T =BR−1BT− (cid:229) x N R−1 (cid:229) x N T, j j j j j=1 j=1 (cid:0) (cid:1) (cid:0) (cid:1) (2.8) Q˜ =Q, wecanrewrite(2.4)and(2.5)intotheform (2.9) x˙=A˜x−B˜R−1B˜Tl , x(0)=x , x(t )=x , 0 f f (2.10) l˙ =−Q˜x−A˜Tl , whichcoincideswiththecanonicalformofthestateandco-stateequationscharacterizingthe optimal trajectories for the analogousoptimalcontrol problem involvingthe time-invariant linearsystemx˙=A˜x+B˜u[19]. Inthisway,theoptimalstateandco-statetrajectoriesforthe optimalcontrolproblem(P1)involvingatime-invariantbilinearsystemarenowexpressedin termsoftheequationsrelatedtoatime-varyinglinearsystemasin(2.9)and(2.10). Usingthis“linear-systemrepresentation”togetherwiththeSweepmethod[19,20],we will solve the optimal control problem (P1) in an iterative manner. Specifically, we will considerateachiterationthefixed-endpointlinearquadraticoptimalcontrolproblem, min J= 1 tf (x(k+1))T(t)Qx(k+1)(t)+(u(k+1))T(t)Ru(k+1)(t) dt, 2 0 Z h i (P2) s.t. x˙(k+1)(t)=A˜(k)x(k+1)+B˜(k)u(k+1) x(k+1)(0)=x , x(k+1)(t )=x , 0 f f 4 S.WANGANDJ.-S.LI by treating the previoustrajectory x(k) as a known quantity, where k∈N denotesthe itera- tion. Inthefollowingsections,wewillintroducetheSweepmethodandpresenttheiterative procedure. 2.1. Sweep method for fixed-endpoint problems. Observe that in (2.9) and (2.10) there are two boundaryconditionsfor the state x while none for the co-state l . It requires implementingspecializedcomputationalmethods,suchasshootingmethods,tosolvesucha two-pointboundaryvalue problem, which in generalinvolveintensive numericaloptimiza- tions. Here,weadopttheideaoftheSweepmethodbyletting (2.11) l (t)=K(t)x(t)+S(t)n , withl (t )=n ,whereK(t), S(t)∈Rn×n andn isthemultiplier,aconstantassociatedwith f theterminalconstrainty ,whichinthiscaseisy (x(t ))=x(t )=x . Fromthetransversality f f f conditionin Pontryagin’smaximumprinciple, we know that K(t )=0 because there is no f ¶y terminalcostandS(t )= =I.Moreover,ifKischosentosatisfytheRiccatiequation f ¶ x x(tf) (2.12) K˙(t)=−(cid:12)(cid:12) Q−A˜TK(t)−K(t)A˜+K(t)B˜R−1B˜TK(t), withtheterminalconditionK(t )=0,thenSsatisfiesthematrixdifferentialequation f (2.13) S˙(t)=−(A˜T−K(t)B˜R−1B˜T)S(t), withtheterminalconditionS(t )=I,bytakingthetimederivativeof(2.11)andusing(2.9), f (2.10)and(2.12). Inaddition,inordertofulfilltheterminalconditiony (x(t ))=x attime f f t ,themultipliern associatedwithy mustsatisfy f (2.14) x =ST(t)x(t)+P(t)n f forallt∈[0,t ],whereP(t)∈Rn×nobeysthematrixdifferentialequation f (2.15) P˙(t)−ST(t)B˜R−1B˜TS(t)=0, withtheterminalconditionP(t )=0. Itfollowsfrom(2.14)usingt=0that f (2.16) n = P(0) −1 x −ST(0)x , f 0 providedP(t)isinvertiblefort∈[0(cid:2),tf]. M(cid:3)or(cid:2)edetailsabou(cid:3)ttheSweepmethodbasedonthe notionofflowmappingareprovidedinAppendix8.1.1. 2.2. Iterationprocedure. Theoptimalsolutionoftheproblem(P1)ischaracterizedby thehomogeneoustime-varyinglinearsystemdescribedin(2.9)and(2.10),andwewillsolve forxandl viaaniterativeprocedure,whichisbasedonanalyticalexpressionsandrequiresno numericaloptimizations.Toproceedthis,wewrite(2.9)and(2.10)astheiterationequations, (2.17) x˙(k+1)=A˜(k)x(k+1)−B˜(k)R−1(B˜(k))Tl (k+1), (2.18) l˙(k+1)=−Q˜(k)x(k+1)−(A˜(k))Tl (k+1), with identicalboundaryconditionsx(k+1)(0)=x andx(k+1)(t )=x forallk=0,1,2,..., 0 f f whereA˜(k),B˜(k)R−1(B˜(k))T,andQ˜(k) aredefinedaccordingto(2.6),(2.7),and(2.8),by n n (2.19) A˜(k)=A − (N R−1 B+(cid:229) x(k)N T+ B+(cid:229) x(k)N )R−1NT l (k) , ij ij j j j j j j i j=1 j=1 h (cid:0) (cid:1) (cid:0) (cid:1) i n n (2.20) B˜(k)R−1(B˜(k))T =BR−1BT− (cid:229) x(k)N R−1 (cid:229) x(k)N T, j j j j j=1 j=1 (cid:0) (cid:1) (cid:0) (cid:1) (2.21) Q˜(k)=Q. FIXED-ENDPOINTCONTROLFORBILINEARENSEMBLES 5 ApplyingtheSweepmethodintroducedinSection2.1,weletl (k+1)(t)=K(k+1)(t)x(k+1)(t)+ S(k+1)(t)n (k+1)fort∈[0,t ],whereK(k) satisfiestheRiccatiequation f (2.22) K˙(k+1)=−Q(k)−K(k+1)A˜(k)−(A˜(k))TK(k+1)+K(k+1)B˜(k)R−1(B˜(k))TK(k+1), withtheboundaryconditionK(k+1)(t )=0,andS(k)follows f (2.23) S˙(k+1)=− (A˜(k))T−K(k+1)B˜(k)R−1(B˜(k))T S(k+1), S(k+1)(t )=I. f h i Moreover,themultipliern (k) satisfies (2.24) n (k+1)= P(k+1)(0) −1 x −(S(k+1))T(0)x , f 0 where P(·)(t)∈Rn×n is invertibl(cid:2)e (see Lem(cid:3)ma(cid:2) 3.1 in Section 3) a(cid:3)nd satisfies the dynamic equation (2.25) P˙(k+1)=(S(k+1))TB˜(k)R−1(B˜(k))TS(k+1) with the terminalconditionP(k+1)(t )=0. Then, the optimalcontrol(2.3) for the original f Problem(P1)canbeexpressedas (2.26) u∗(t)=−R−1 B+(cid:229) n x∗(t)N T[K∗(t)x∗(t)+S∗(t)n ∗], j j j=1 h i ifthisiterativeprocedureisconvergent,wherex(k)→x∗,K(k)→K∗,andS(k)n (k)→S∗n ∗. REMARK 1. The iterative method can be initialized by convenientlyusing the optimal controlofthesysteminvolvingonlythelinearpartofthebilinearsystemin(P1),i.e.,theLQR control. Thatis,thesolution(x(0)(t),l (0)(t))tothehomogeneoussystem x˙(0)=Ax(0)−BR−1BTl (0), x(0)(0)=x , x(0)(t )=x , 0 f f l˙(0)=−ATl (0). However, the linearsystem x˙=Ax+Bu may be uncontrollableso that the desired transfer between x and x is impossible and the LQR solution does not exist. In such a case, any 0 f statetrajectorywiththeendpointsx andx canbeafeasibleinitialtrajectoryx(0)(t)ofthe 0 f iterativeprocedure. 2.3. Aspecialcase: minimum-energycontrolofbilinearsystems. Beforeanalyzing the convergence of the iterative method, we illustrate the procedure using the example of minimum-energycontrolof bilinear systems, which is a special case of Problem (P1) with Q=0. Considerthefollowingfixed-endpointoptimalcontrolproblem, min J= 1 tf uT(t)Ru(t)dt, 2 0 Z n (cid:229) (P3) s.t. x˙(t)=Ax+Bu+ x (t)N u, j j "j=1 # x(0)=x , x(t )=x . 0 f f TheHamiltonianofthisproblemisH(x,u,l )= 1uTRu+l T[Ax+Bu+((cid:229) n x N )u],where 2 j=1 j j l (t)∈Rnistheco-statevector.Theoptimalcontrolisoftheformasin(2.3)andtheoptimal 6 S.WANGANDJ.-S.LI stateandco-statetrajectoriessatisfy(2.9)and(2.10),respectively,withQ=0.Therespective iterationequationsfollow(2.17)and(2.18)withQ(k)=0forallk=0,1,2,.... FollowingtheiterativemethodpresentedinSection2.2,werepresentthecostatel (k+1)(t)= K(k+1)(t)x(k+1)(t)+S(k+1)(t)n (k+1),t ∈[0,t ],andthematrixK(k+1)(t)∈Rn×n satisfiesthe f Riccatiequation, (2.27) K˙(k+1)=−K(k+1)A˜(k)−(A˜(k))TK(k+1)+K(k+1)B˜(k)R−1(B˜(k))TK(k+1), with the terminal condition K(k+1)(t )= 0, which has the trivial solution, K(k+1)(t)≡ 0, f ∀k=0,1,2,...,andfort∈[0,t ]. Thisgives f (2.28) l (k+1)(t)=S(k+1)(t)n (k+1), andS(k+1)satisfies (2.29) S˙(k+1)=−(A˜(k))TS(k+1), S(k+1)(t )=I. f In addition, the multiplier associated with the terminal constraintis expressed as in (2.24). Combining(2.28)with(2.3)givestheminimum-energycontrolatthe(k+1)th iteration, (2.30) (u∗)(k+1)(t)=−R−1 B+(cid:229) n x(k+1)N TS(k+1)n (k+1). j j j=1 h i NotethattheauxiliaryvariableP(k)(t)∈Rn×nateachiterationsatisfies(2.25),andthus P(k+1)(0)=−F (t ,0)W(k+1)F T (t ,0), A˜(k) f A˜(k) f where F T (t ,t)=F (t,t ) is the transition matrix for the homogeneous equation A˜(k) f −(A˜(k))T f (2.29)and W(k+1)= tf F (0,s )B˜(k)R−1(B˜(k))TF T (0,s )ds A˜(k) A˜(k) 0 Z isthecontrollabilityGramianforthetime-varyinglinearsystemasinProblem(P3),or,equiv- alently,asin(2.9)and(2.10)withQ=0. Moreover,theclosed-loopexpressionin(2.30)is consistentwiththeopen-loopexpressionoftheminimum-energycontrolintermsofthecon- trollabilityGramian,thatis, n (2.31) (u∗)(k+1)=R−1 B+(cid:229) x(k+1)N TF T (0,t) W(k+1) −1x (k), j j A˜(k) j=1 (cid:2) (cid:3) (cid:0) (cid:1) wherex (k)=F (0,t )x −x . A˜(k) f f 0 3. ConvergenceoftheIterativeMethod. Followingtheiterativealgorithmdescribed inSection2.2,weexpecttofindtheoptimalcontrolforProblem(P1),providedtheiterations areconvergent.Inthissection,weshowthattheconvergenceofthisalgorithmispertinentto thecontrollabilityofthelinearsystemconsideredateachiterationanddependsonthechoice of the weightmatrix R. In Section 5, we will extendthis iterative methodto solve optimal controlproblemsinvolvingbilinearensemblesystems. Tofacilitatetheproof,weintroducethefollowingmathematicaltools. Consideringthe . . . Banach spaces, X =C([0,t ];Rn), Y =C([0,t ];Rn×n), and Z =C([0,t ];Rn) with the f f f FIXED-ENDPOINTCONTROLFORBILINEARENSEMBLES 7 norms (3.1) kxka = sup kx(t)kexp(−a t) , for x∈X, t∈[0,tf] (cid:2) (cid:3) (3.2) kyka = sup ky(t)kexp(−a (tf−t)) , for y∈Y, t∈[0,tf] (cid:2) (cid:3) (3.3) kzka = sup kz(t)kexp(−a (tf−t)) , for z∈Z, t∈[0,tf] (cid:2) (cid:3) in which kvk=(cid:229) n |v| for v∈Rn and kDk=max (cid:229) n |D | for D∈Rn×n, and the i=1 i 1≤j≤n i=1 ij parameter a serves as an additional degree of freedom to control the rate of convergence [17], we define the operators T :X ×Y ×Z →X, T :X ×Y ×Z →Y, and T : 1 2 3 X ×Y ×Z →Z thatcharacterizethedynamicsofx∈X,K∈Y,andSn ∈Z asdescribed inSection2.2,givenby d T [x,K,Sn ](t)=A˜(x(t),K(t),S(t)n )T [x,K,Sn ](t)−B˜(x(t))R−1B˜T(x(t))T [x,K,Sn ](t) 1 1 3 dt (3.4) −B˜(x(t))R−1B˜T(x(t))T [x,K,Sn ](t)T [x,K,Sn ](t), 2 1 T [x,K,Sn ](0)=x 1 0 d T [x,K,Sn ](t)=−Q+T [x,K,Sn ](t)B˜(x(t))R−1B˜T(x(t))T [x,K,Sn ](t) 2 2 2 dt (3.5) −T [x,K,Sn ](t)A˜(x(t),K(t),S(t)n )−A˜T(x(t),K(t),S(t)n )T [x,K,Sn ](t) 2 2 T [x,K,Sn ](t )=0, 2 f d T [x,K,Sn ](t)=− A˜T(x(t),K(t),S(t)n )−T [x,K,Sn ](t)B˜(x(t))R−1B˜T(x(t)) · 3 2 dt (3.6) T [hx,K,Sn ](t), i 3 T [x,K,Sn ](t )=n (T [x,K,Sn ],T [x,K,Sn ],T [x,K,Sn ]) 3 f 1 2 3 wheren (T [x,K,Sn ],T [x,K,Sn ],T [x,K,Sn ])isthemultipliersatisfying(2.24). Withthese 1 2 3 definitionsand the followinglemma, the convergenceof the iterativemethodcan be devel- opedusingthefixed-pointtheorem. LEMMA 3.1. The matrix P(k+1)(t) as in (2.25) is nonsingular over t ∈[0,tf] at each iterationk ifandonlyifthetime-varyinglinearsysteminProblem(P2)iscontrollableover [0,t ][19]. f Proof: SeeAppendix8.1.3. (cid:3) THEOREM3.2. Considertheiterativemethodwiththeiterationsevolvingaccordingto (3.7) x(k+1)(t)=T [x(k),K(k),S(k)n (k)](t), 1 (3.8) K(k+1)(t)=T [x(k),K(k),S(k)n (k)](t), 2 (3.9) S(k+1)(t)n (k+1)=T [x(k),K(k),S(k)n (k)](t), 3 wheretheoperatorsT ,T ,andT aredefinedin(3.4),(3.5),and(3.6),respectively.Ifateach 1 2 3 iteration k the linear system as in (P2) is controllable, then T , T , and T are contractive. 1 2 3 Furthermore,startingwithatriple offeasibletrajectories(x(0),K(0),S(0)n (0)), theiteration procedure is convergent, and the sequences x(k), K(k) and S(k)n (k) converge to the unique fixedpoints,x∗,K∗,and(Sn )∗,respectively. Proof:Becausethelinearsystemin(P2)iscontrollableateachiterationk,byLemma3.1 thematrixP(k+1) definedin(2.25)isinvertibleandhencethemultipliern (k+1) expressedin 8 S.WANGANDJ.-S.LI (2.24)iswell-defined.Then,wehave,attimet ,S(k+1)(t )n (k+1)=T [x(k),K(k),S(k)n (k)](t )= f f 3 f n (k+1),sinceS(k+1)(t )=I. f From(2.19)and(2.20),foreachfixedt∈[0,t ],weobtainthebounds f kA˜(k+1)−A˜(k)k≤ (cid:229) n kGk2 1/2kl (k+1)−l (k)k i i=1 h i +k (cid:229) n kH k2 1/2 kl (k+1)kkx(k+1)−x(k)k+kx(k)kkl (k+1)−l (k)k , ij i,j=1 h i n o kB˜(k+1)R−1(B˜(k+1))T−B˜(k)R−1(B˜(k))Tk≤k (cid:229) n kH k2 1/2k(x(k+1))2−(x(k))2k, ij i,j=1 h i whereG =NR−1BT+BR−1NT andH =NR−1NT+N R−1NT,andfrom(2.21),wehave i i i ij i j j i Q˜(k+1) =Q˜(k) for all k=0,1,2,.... Substituting (2.18) into the aboveinequalities, we can writetheseboundsintermsofkx(k+1)−x(k)k,kK(k+1)−K(k)kandkS(k+1)n (k+1)−S(k)n (k)k, givenby kA˜(k+1)−A˜(k)k≤ (cid:229) n kGk2 1/2+kx(k)k (cid:229) n kH k2 1/2 · i ij i=1 i,j=1 nh i h i o (3.10) kK(k+1)kkx(k+1)−x(k)k+kK(k+1)−K(k)kkx(k)k+kS(k+1)n (k+1)−S(k)n (k)k (cid:8)+ (cid:229) n kH k2 1/2kK(k+1)kkx(k+1)k+kS(k+1)n (k+1)kkx(k+1)−x(k)k, (cid:9) ij i,j=1 h i kB˜(k+1)R−1(B˜(k+1))T−B˜(k)R−1(B˜(k))Tk≤ (cid:229) n kH k2 1/2· ij i,j=1 h i (3.11) kx(k+1)k+kx(k)k kx(k+1)−x(k)k. n o Inaddition,thesolutionto(2.23)isgivenby S(k+1)(t)=F (t,t )S(k+1)(t ) −[(A˜(k))T−K(k+1)B˜(k)R−1(B˜(k))T] f f (3.12) =F T (t ,t), [A˜(k)−B˜(k)R−1(B˜(k))TK(k+1)] f whereF denotesthetransitionmatrixassociatedwiththehomogeneoussystem(2.23)and (.) S(k+1)(t )=I. Then,wehave f T kS(k+1)(t)−S(k)(t)k≤ k (S(k+1))T(t) −1kkS(k+1))T(s )k kA˜(k)(s )−A˜(k−1)(s )k t Z (3.13) +kB˜(k)R(cid:2)−1(B˜(k))T(s (cid:3))−B˜(k−1)R−1(B˜(k−h1))T(s )kkK(k+1)(s )k +kB˜(k−1)R−1(B˜(k−1))T(s )kkK(k+1)(s )−K(k)(s )k kS(k)(s )kds . i FromtheRiccatiequationforK(k) describedin(2.22),wecanwritethedifferentialequation forthedifferenceK(k+1)−K(k)as d (K(k+1)−K(k))=−(K(k+1)−K(k)) A˜(k)−B˜(k)R−1(B˜(k))TK(k+1) dt h T i (3.14) − A˜(k)−B˜(k)R−1(B˜(k))TK(k+1) (K(k+1)−K(k)) −Kh(k)(A˜(k)−A˜(k−1))−(A˜(k)−Ai˜(k−1))TK(k+1) +K(k)(B˜(k)R−1(B˜(k))T−B˜(k−1)R−1(B˜(k−1))T)K(k+1), FIXED-ENDPOINTCONTROLFORBILINEARENSEMBLES 9 with the terminal condition K(k+1)(t )−K(k)(t )=0. Applying the variation of constants f f formula,backwardintimefromt=t ,to(3.14)andemploying(3.12)yield f K(k+1)(t)−K(k)(t)=(S(k))T(t) tf (S(k))T(s ) −1 K(k)(s ) A˜(k)(s )−A˜(k−1)(s ) t Z + A˜(k)(s )−A˜(k−1)n(s ) ThK(k+1)(s )−iK(hk)(s )· (cid:0) (cid:1) −1 B˜(cid:0)(k)R−1(B˜(k))T−B˜(k−1(cid:1))R−1(B˜(k−1))T K(k+1)(s ) S(k+1)(s ) ds S(k+1)(t), whichresult(cid:0)sin (cid:1) ih i o kK(k+1)(t)−K(k)(t)k≤ tf b kA˜(k)(s )−A˜(k−1)(s )k 1 t Z h (3.15) +b kB˜(k)R−1(B˜(k))T(s )−B˜(k−1)R−1(B˜(k−1))T(s )k ds , 2 i whereb andb arebothfinitetime-varyingcoefficients(seeAppendix8.2). 1 2 Similarly, from (2.17) and (2.18), we can write the differential equation for (x(k+1)− x(k)),thatis, d (x(k+1)−x(k))= A˜(k)−B˜(k)R−1(B˜(k))TK(k+1) (x(k+1)−x(k)) dt h i + (A˜(k)−A˜(k−1))− B˜(k)R−1(B˜(k))T−B˜(k−1)R−1(B˜(k−1))T K(k+1) n (cid:16) (cid:17) (3.16) −B˜(k−1)R−1(B˜(k−1))T(K(k+1)−K(k)) x(k) o − B˜(k)R−1(B˜(k))T−B˜(k−1)R−1(B˜(k−1))T S(k+1)n (k+1) −B(cid:16)˜(k−1)R−1(B˜(k−1))T S(k+1)n (k+1)−S(k)(cid:17)n (k) , with the terminal condition x(k+1)(t )−x(cid:0)(k)(t )=0. Applying (cid:1)the variation of constants f f formulato(3.16)yields, −1 t x(k+1)(t)−x(k)(t)= (S(k+1))T(t) (S(k+1))T(s ) A˜(k)(s )−A˜(k−1)(s ) 0 Z − hB˜(k)R−1(B˜(k)i)T(s )−B˜(k−1)R−1(nB˜h(k(cid:0)−1))T(s ) K(k+1)(s )(cid:1) −(cid:0)B˜(k−1)R−1(B˜(k−1))T(s ) K(k+1)(s )−K(k)(s )(cid:1)x(k)(s ) − B˜(k)R−1(B˜(k))T−B˜(k−(cid:0)1)R−1(B˜(k−1))T S(k+1(cid:1))in (k+1) (cid:16) (cid:17) −B˜(k−1)R−1(B˜(k−1))T(S(k+1)n (k+1)−S(k)n (k)) ds . o Itfollowsthat t kx(k+1)(t)−x(k)(t)k≤ b kA˜(k)(s )−A˜(k−1)(s )k+b kK(k+1)(s )−K(k)(s )k 3 4 0 Z h (3.17) +b kB˜(k)R−1(B˜(k))T(s )−B˜(k−1)R−1(B˜(k−1))T(s )k 5 +b kS(k+1)n (k+1)(s )−S(k)n (k)(s )k ds , 6 i whereb ,b , b andb areallfinitetime-varyingcoefficients(seeAppendix8.2). Further- 3 4 5 6 more,sincen (k+1) isaconstantwithineachiterationk,from(2.23)wecanwrite d (S(k+1)n (k+1))=− (A˜(k))T−K(k+1)B˜(k)R−1(B˜(k))T S(k+1)n (k+1), dt h i 10 S.WANGANDJ.-S.LI withtheterminalconditionS(k+1)(t )n (k+1)=n (k+1). Thisallowsustowrite f d T (S(k+1)n (k+1)−S(k)n (k))=− A˜(k)−B˜(k)R−1(B˜(k))TK(k+1) (S(k+1)n (k+1)−S(k)n (k)) dt h i − (A˜(k)−A˜(k−1))−B˜(k−1)R−1(B˜(k−1))T(K(k+1)−K(k)) n T − B˜(k)R−1(B˜(k))T−B˜(k−1)R−1(B˜(k−1))T K(k+1) S(k)n (k), (cid:16) (cid:17) o withtheterminalconditionS(k+1)(t )n (k+1)−S(k)(t )n (k)=n (k+1)−n (k),andthen f f −1 S(k+1)(t)n (k+1)−S(k)(t)n (k)= (S(k+1))T(t) (n (k+1)−n (k)) − tf(S(k+1))T(hs ) (A˜(k)−A˜i(k−1n))−B˜(k−1)R−1(B˜(k−1))T(K(k+1)−K(k)) t Z h T − B˜(k)R−1(B˜(k))T−B˜(k−1)R−1(B˜(k−1))T K(k+1) S(k)n (k)ds . (cid:16) (cid:17) i o From(2.24)wemayobtain kn (k+1)−n (k)k≤k(P(k+1))−1kkP(k+1)(t)−P(k)(t)kkn (k)k (3.18) +k(P(k+1))−1kkS′(k+1)(t)−S′(k)(t)kkx k, 0 inwhich,byevolving(2.25)backwardintimefromt=t ,thedifferenceP(k+1)(t)−P(k)(t) f satisfies P(k+1)(t)−P(k)(t)=− tf S(k+1)+S(k) B˜(k−1)R−1(B˜(k−1))T S(k+1)(s )−S(k)(s ) t Z (cid:20) (cid:0) (cid:1) (cid:0) (cid:1) (3.19) +S(k+1) B˜(k)R−1(B˜(k)(s ))T−B˜(k−1)R−1(B˜(k−1)(s ))T S(k) ds . (cid:16) (cid:17) (cid:21) Using(3.18)and(3.19),weobtain kS(k+1)(t)n (k+1)−S(k)(t)n (k)k≤ tf b kA˜(k)(s )−A˜(k−1)(s )k 7 t Z h (3.20) +b kB˜(k)R−1(B˜(k))T(s )−B˜(k−1)R−1(B˜(k−1))T(s )k 8 +b kK(k+1)(s )−K(k)(s )k ds , 9 i whereb ,b andb arefinitetime-varyingcoefficients(seeAppendix8.2). 7 8 9 Combining the bounds in (3.10), (3.11), (3.15), (3.17), and (3.20), and using the def- initions of the operators T , T , and T in (3.4), (3.5) and (3.6), respectively, we reach the 1 2 3 inequalitythatholdscomponent-wise,givenby kT1[x(k),K(k),S(k)n (k)]−T1[x(k−1),K(k−1),S(k−1)n (k−1)]ka kT2[x(k),K(k),S(k)n (k)]−T2[x(k−1),K(k−1),S(k−1)n (k−1)]ka kT3[x(k),K(k),S(k)n (k)]−T3[x(k−1),K(k−1),S(k−1)n (k−1)]ka kx(k)−x(k−1)ka (3.21) ≤M kK(k)−K(k−1)ka , kS(k)n (k)−S(k−1)n (k−1)ka