Five-quark components in baryons Bing-SongZou InstituteofHighEnergyPhysics,CAS,P.O.Box918,Beijing100049,China; TheoreticalPhysicsCenterforScienceFacilities,CAS,Beijing100049,China; CenterofTheoreticalNuclearPhysics,NationalLabofHeavyIonAccelerator,Lanzhou730000,China 0 1 Abstract 0 2 Evidencehasbeenaccumulatingfortheexistenceofsignificantintrinsicnon-perturbativefive- n quarkcomponentsinvariousbaryons.Theinclusionofthefive-quarkcomponentsgivesanatural a explanationoftheexcessofd¯overu¯,significantquarkorbitalangularmomentumintheproton, J theproblematicmassanddecaypatternofthelowest1/2−baryonnonet,etc.. Abreathingmode 7 ofqqq↔qqqqq¯issuggestedforthelowest1/2−baryonoctet.Evidenceofapredictedmember ] ofthenewscheme,Σ∗(1/2−)around1380MeV,isintroduced. h t Keywords: Baryon,five-quarkcomponents - l PACS:14.20.-c,12.39.-x c u n [ 1. 5-quarkcomponentsintheproton 1 Inthe classicalquarkmodelspriorto QCD, eachprotonwas regardedas composedof two v 4 u quarksandone d quark. The classical quarkmodelsgaveverygooddescriptionofthe mass 8 pattern and magnetic moments for the baryon SU(3) baryon 1/2+ octet and 3/2+ decuplet of 0 spatial ground states. Then the QCD introduces the gluon field which can fluctuate into sea 1 quarkqq¯pairsinadditiontothethreevalencequarksinsideaproton.Butuntilabouttheyearof . 1 1992,u¯(x)=d¯(x)ands(x)= s¯(x)wereassumedfortheseaquarkpartondistributionfunctions. 0 However, evidence has been accumulating for the existence of significant intrinsic non- 0 perturbativefive-quarkcomponentsintheproton. Asurprisinglylargeasymmetrybetweenthe 1 u¯ andd¯seaquarkdistributionsintheprotonwithd¯−u¯ ∼0.12wasobservedfromdeepinelastic : v scatteringandDrell-Yanexperiments[1].Apopularexplanationfortheexcessofd¯overu¯ inthe i X proton was given by meson-cloudmodel[2] by includingin the protona mixture of nπ+ with theπ+ composedofud¯. Recently,bystudyingstrangenessintheproton,anewconfigurationof r a diquark-diquark-antiquarkstructureisproposedforthefive-quarkcomponentsintheproton[3]. The diquarkclusterconfigurationsalso givea naturalexplanationforthe excessof d¯overu¯ in the proton with a mixture of [ud][ud]d¯ component in the proton [3]. The measured value of d¯−u¯ ∼0.12demandsthe5-quarkcomponentsintheprotontobemorethan12%. Furtherevidencescamefromprotonspinproblemandsingle-spinasymmetryproblem,which both indicate the presence of quark orbital angular momentum in the proton. The five-quark uudqq¯ componentsin the proton with the q¯ of negative intrinsic parity demand either a quark or anti-quark in the P-wave to make up the proton of positive intrinsic parity. So it gives nat- urally the nonzero quark orbital angular momentum and hence a natural explanation to both problems[3,4]. PreprintsubmittedtoNuclearPhysicsA January7,2010 To tell the relative importance of meson cloud and diquark cluster mixtures in the proton, more precise experiments on the strangeness in the proton are needed. While the KΛ meson cloud picture predicts strangeness magnetic moment and strangeness radius both negative [5], thediquarkclusterpicturepredictsbothpositive[3]. Presentexperimentsarenotpreciseenough todistinguishthetwopictures[6,7]. Theextremelysmallnessofthesestrangenessobservables mayeitherindicateverysmallpercentageofthe strangenesscomponentin theprotonorabout equallytheKΛmesoncloudand[ud][us]s¯contributionscancelingeachother. 2. NewschemeforN∗(1535)andits1/2−nonetpartnerswithlarge5-quarkcomponents In the simple 3q constituent quark model, the lowest spatial excited baryon is expected to bea(uud)N∗ statewithonequarkinorbitalangularmomentumL = 1state,andhenceshould have negative parity. Experimentally, the lowest negative parity N∗ resonance is found to be N∗(1535),whichisheavierthantwootherspatialexcitedbaryons:Λ∗(1405)andN∗(1440).This isthelong-standingmassreverseproblemforthelowestspatialexcitedbaryons. Recentlyalargevalueofg isdeduced[8,9]byasimultaneousfittoBESdataon N∗(1535)KΛ J/ψ → p¯pη, pK−Λ¯ +c.c., and COSY data on pp → pK+Λ. There is also evidence for large g couplingfromγp → pη′ reactionatCLAS[10]and pp → ppη′ reaction[11],and N∗(1535)Nη′ large g coupling from π−p → nφ, pp → ppφ and pn → dφ reactions [12, 13], but N∗(1535)Nφ smallercouplingofg fromcomparisonof pp→ pK+Λto pp→ pK+Σ0[14]. N∗(1535)KΣ Themass reverseproblemcanbe easily understoodby considering5-quarkcomponentsin them[8,15]. The N∗(1535)couldbethelowest L = 1orbitalexcited|uud >statewithalarge admixtureof|[ud][us]s¯>pentaquarkcomponenthaving[ud],[us]ands¯inthegroundstate. The N∗(1440)couldbethelowestradialexcited|uud >statewithalargeadmixtureof|[ud][ud]d¯> pentaquarkcomponenthavingtwo[ud]diquarksintherelativeP-wave. WhilethelowestL= 1 orbitalexcited|uud>stateshouldhaveamasslowerthanthelowestradialexcited|uud >state, the|[ud][us]s¯>pentaquarkcomponenthasahighermassthan|[ud][ud]d¯>pentaquarkcompo- nent. ThelighterΛ∗(1405)1/2−isalsounderstandableinthispicture. Itsmain5-quarkconfigu- rationis|[ud][us]u¯ >whichislighterthanthecorresponding5-quarkconfiguration|[ud][us]s¯> intheN∗(1535)1/2−. Thelargemixtureofthe |[ud][us]s¯ > pentaquarkcomponentin the N∗(1535)mayalso ex- plainnaturallyitslargecouplingstotheNη, Nη′, NφandKΛtogetherwithitssmallcouplings totheNπandKΣ. Inthedecayofthe|[ud][us]s¯>pentaquarkcomponent,the[ud]diquarkwith isospinI =0isstableandkeepsunchangedwhilethe[us]diquarkisbrokentocombinewiththe s¯toformeitherK+(us¯)Λ([ud]s)orφ(ss¯)p([ud]u). Theinclusionofthelarge5-quarkcomponentsintheN∗(1535)causesanaturalcancelation betweenthecontributionsoftheqqqandqqqqq¯ componentstotheaxialchargeoftheN(1535) resonance[16] and introducesan importantnew mechanismas shownin Fig. 1 for its electro- magnetictransitionγ∗N →N∗(1535)[17]. Theexperimentalmeasuredγ∗N → N∗(1535)amplitudehasamuchflatter Q2-dependence than the classical qqq quark model predictions as shown in Fig. 2(left). The new mechanism givesamuchflatterQ2-dependenceasshownbythedot-dashedcurveinFig.2. Withabout45% 5-quark componentsin N∗(1535) and 20% in proton, the measured electromagnetic transition γ∗N →N∗(1535)amplitudeismuchbetterfittedasshowninFig.2(right). Taking the qqqqq¯ components into account, the constituent quarks masses should be a bit smaller than the ones employed in the case of pure qqq configuration. To reproducethe mass 2 q(p~4) γ∗(~k) q¯(~k−p~4) N∗(1535)(~0) N(−~k) Figure1:γ∗→qq¯mechanismfortheγ∗N→N∗(1535)transition. 180 3=340MeV 180 =340MeV, 160 3=246MeV 160 3=200MeV =600MeV 140 140 =246MeV, -1/2GeV)110200 -1/2GeV)110200 ===613004000M0MMeeVeVV, p-3 A (101/2 6800 p-3 A (101/2 6800 40 40 20 20 0 0-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Q2 (GeV2) Q2 (GeV2) Figure2:ThehelicityamplitudeAp forγ∗p→N∗(1535)withpureqqqconfiguration(left)andwith5-quarkcompo- 1/2 nentinaddition(right)wherethedot-dashedcurveisthecontributionfromtheγ∗→qq¯transition[17]. for the nucleon when the five-quark components have been included, the values m = m = u d m = 290MeVandm = 430MeVareused. Theoscillatorparameterfortheqqqcomponents, s ω , is from literature, basically determined from the proton radius. The oscillator parameter 3 for the qqqqq¯ components, ω , is treated as a free parameter, which is foundto be largerthan 5 ω . This is consistent with other empirical evidence favoring larger value of the ω [18, 19, 3 5 20, 21]. In our extended quark model with each baryon as a mixture of the three-quark and five-quark components, the two components represent two different states of the baryon. For the qqqqq¯ state, there are more color sources than the qqq state, and may make the effective phenomenologicalconfinementpotentialstronger. Forthelowest1/2− baryonoctet, thelarger ω value corresponds a smaller size for the 5-quark components. An intuitive picture for our 5 extendedquarkmodelis the qqq ↔ qqqqq¯ breathingmodelike this: the qqqstate with L = 1 andhigherkineticenergyhasweakerpotential;whenquarksexpand,aqq¯ pairispulledoutand resultsinaqqqqq¯statewithL=0andstrongerpotential;thestrongerpotentialleadsqqqqq¯state shrinkingtoamorecompactstatewhichthenmakestheq¯ toannihilatewithaquarkeasilyand transitstotheqqqstate with L = 1andmorekineticenergytoexpand;thisleadstoconstantly transitionsbetweenthesetwostates. If this picture of large 5-quark mixture is correct, there should also exist the SU(3) nonet partnersof the N∗(1535)and Λ∗(1405),i.e., anadditionalΛ∗ 1/2− around1570MeV, a triplet Σ∗ 1/2− around1360MeVandadoubletΞ∗ 1/2− around1520MeV[15]. Thereisnohintfor thesebaryonresonancesinthePDGtables[22]. However,aspointedoutinRef.[23],thereisin factevidenceforalloftheminthedataofJ/ψdecaysanditcanbeeasilycheckedwiththehigh 3 statisticsBESIIIdatainnearfuture[24]. Recently,newevidenceforthepredictedΣ∗ resonance with JP = 1/2− and mass around 1380 MeV was found in the old data of K−p → Λπ+π− reaction[25],asintroducedinthenextsection. 3. EvidenceforthepredictedΣ∗(1/2−)ofthenewscheme TheunquenchedmodelsgiveinterestingpredictionsfortheisovectorpartneroftheΛ∗(1405) andN∗(1535). Whilethepenta-quarkmodels[15,26]predictaΣ∗(1/2−)resonancewithamass aroundorlessthanitscorrespondingΛ∗partner,themesoncloudmodel[27]predictsittobenon- resonantbroadstructure.Thepredictionsoftheseunquenchedmodelsandtheclassicalquenched quarkmodelsaredistinctiveandneedtobecheckedbyexperiments.Hencewere-examinedthe olddataofK−p→Λπ+π−reactiontoseewhetherthereisevidenceforitsexistenceornot[25]. The K−p → Λπ+π− reaction was studied extensively around 30 years ago for extracting propertiesoftheΣ∗(1385)resonance,withK− beammomentumrangingfrom0.95GeVto8.25 GeV.IntheinvariantmassspectrumofΛπofthisreactionthereisastrongpeakwithmassaround 1385MeVandwidtharound40MeV.ThemassfitsinthepatternofSU(3)baryondecupletof JP = 3/2+ predictedby the classical quarkmodelperfectly. The angulardistributionanalyses also conclude thatthe spin of this resonanceis 3/2. Howeverwe foundthat all these analyses are in fact assuming that there is only one resonance under the peak. Nobody has considered thatthereareprobablytworesonancesthere. Thismaybebecausetherearenootherpredicted Σ∗ resonancesaroundthismassregionintheclassicalquarkmodels. SincenowanewΣ∗ with the JP = 1/2− around this mass region is predicted by various unquenched models, the old K−p→Λπ+π−reactionshouldbere-scrutinizedcarefully. WeexaminedpreviousexperimentalanalysesontheK−p→Λπ+π− reaction. Amongthem, wefindthattheinvariantmassspectraofΛπ− withbeammomentumP = 1.0 ∼ 1.8GeV are K− differentfromothers.ThepeakaroundΣ∗(1385)inthesemassspectracannotbefitasperfectas othersetsofdatawithasingleBreit-Wignerresonance. SinceRef.[28]presentsthelargestdata sampleandthemosttransparentangulardistributionanalysisofthisreaction,were-fittheΛπ− massspectrumandangulardistributionofRef.[28]bytakingintoaccountthepossibilityoftwo Σ∗ resonancesinthismassregion. Theresultsofthe fitswith a single andtwo Σ∗ resonancesaround1385MeVare shownin Fig.3andTable1wherefittedparameterswithstatisticalerrorsaregiven. Thefitwithasingle Σ∗resonance(Fit1)isalreadynotbad.ThefitwithtwoΣ∗resonances(Fit2)improvesχ2by10.5 comparedwiththeFit1for60datapointswith3morefittingparameters. Althoughthisisjusta lessthan3σimprovement,apointfavoringFit2isthatwhilethesingleΣ∗ resonanceinFit1has awidthlargerthanthePDGvalue[22]of36±5MeVfortheΣ∗(1385)resonance,thenarrower Σ∗ resonanceinFit2givesa widthcompatiblewiththePDG valuefortheΣ∗(1385)resonance. IntheFit2,thereisanadditionalbroaderΣ∗resonancewithawidthabout120MeV. M Γ M Γ χ2/ndf(Fig.1) χ2/ndf(Fig.2) Σ∗(3/2) Σ∗(3/2) Σ∗(1/2) Σ∗(1/2) Fit1 1385.3±0.7 46.9±2.5 68.5/54 10.1/9 Fit2 1386.1+1.1 34.9+5.1 1381.3+4.9 118.6+55.2 58.0/51 3.2/9 −0.9 −4.9 −8.3 −35.1 Table1:Fittedparameterswithstatisticalerrorsandχ2overnumberofdegreeoffreedom(ndf)forthefitswithasingle (Fit1)andtwoΣ∗resonances(Fit2)around1385MeV. 4 1.3 1.4 1.5 1.6 1.7 1.8 600 600 1.3 1.4 1.5 1.6 1.7 1.8 600 600 500 500 500 500 V 0 Me400 400 MeV 400 400 Events per 1123000000 123000000 vents per 10 123000000 123000000 E 0 0 0 0 1.3 1.4 1.5 1.6 1.7 1.8 1.3 1.4 1.5 1.6 1.7 1.8 M (GeV) M (GeV) Figure3: FitstotheΛπ−massspectrumwithasingleΣ∗(left)andtwoΣ∗resonances(right)around1385MeVwith fittingparameters listedinTable1. Theexperiment dataarefromRef.[28]on K−p → Λπ+π− withbeammomenta around1.4GeV. Thepreferredassignmentofspin J =3/2fortheΣ∗(1385)resonanceinRef.[28]isdemon- stratedbythedistributionofthecosineoftheanglebetweentheΛdirectionandtheK−direction forthereactionK−p → Λπ+π− with M intherangeof1385±45MeVandcosθ > 0.95. Λπ− KΣ∗ For a Σ∗ with J = 3/2, the angular distribution is expected to be of the form (1+3cos2θ)/2; whileforaΣ∗ with J = 1/2,aflatconstantdistributionispredicted. Thedata[28]asshownin Fig.2clearlyfavorthecaseof J = 3/2ifonlyasingleΣ∗ resonanceisassumed. However,the Fit2withtwoΣ∗ resonanceswiththenarroweroneofJ =3/2andthebroaderonewith J =1/2 reproducesthedataevenbetterasshownbythesolidcurveinFig.4. Theresultsshowthatthe inclusionofanadditionalΣ∗(1/2−)besidesthewell-establishedΣ∗(1385)3/2+seemsimproving thefittothedataof K− beammomentaaround1.4GeVforbothΛπ− invariantmassspectrum andtheangulardistributionalthoughthelargeerrorbarsfortheangulardistributiondatamake itnotveryconclusive. -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 35 35 30 30 25 25 nts 20 20 e v 15 15 E 10 10 5 5 0 0 -1.0 -0.8 -0.6 -0.4 -0.2 (0.0 0.2) 0.4 0.6 0.8 1.0 Cos .K Figure4: Predictions fortheangulardistribution forthe Figure5:TheoreticalΛπ−invariantmasssquareddistribu- reaction K−p → Λπ+π− at beam momenta around 1.4 tionwithpureΣ∗(3/2+)(dottedline)andwithaΣ∗(1/2−) GeVbyFit1(dashedcurve)andFit2(solidcurve),com- in addition (solid line) for the K−p → Λ∗(1520) → paredwiththedatafromRef.[28]. Σ∗π→Λπ+π−reactionatbeammomentaaround0.4GeV, comparedwithdata[30]. 5 Furtherstrongerevidenceisfoundfromastudy[29]onthedataoftheK−p→Λ∗(1520)→ Σ∗π → Λπ+π− reactionatbeammomentaaround0.4GeV [30]. The theoreticalΛπ− invariant masssquareddistributionwithpureΣ∗(3/2+)failstoreproducethedataasshownbythedotted line in Fig. 5. With a Σ∗(1/2−) in addition, the data are perfectlyreproducedas shown by the solidlineinFig.5. Recently,theLEPScollaborationreportedameasurementofthereactionγn→K+Σ∗−(1385) with linearlypolarizedphotonbeamatresonanceregion[31]. Thebeamasymmetryissizably negativeatE = 1.8−2.4GeV,whichisingreatcontrasttothetheoreticalpredictionofavery γ smallbeamasymmetry[32]. ItisfoundthatincludinganadditionalΣ∗(1/2− givesnaturallythe sizablynegativebeamasymmetry[33]. 4. 5-quarkcomponentsinotherbaryons The 5-quark componentsin other baryons are also found important. An admixture of 10- 20%ofqqqqq¯ componentsinthe∆(1232)resonanceisshowntoreducethewellknownunder- predictionforthedecaywidthfor∆(1232)→Nγdecaybyabouthalfandthatofthecorrespond- inghelicityamplitudesaboutafactor1.6.Themaineffectisduetothequark-antiquarkannihila- tiontransitionsqqqqq¯ →qqqγ,theconsiderationofwhichbringstheratioA /A andconse- 3/2 1/2 quentlytheE2/M1ratioR intoagreementwiththeempiricalvalue[18].Thelargecontribution EM ofthequark-antiquarkannihilationtransitionsmayalsocompensatetheunder-predictionofthe πN decaywidthof the ∆(1232)by the valencequarkmodel, oncethe ∆(1232)containsqqqqq¯ componentswith∼10%probability[19]. Thepresenceofsubstantialqqqqq¯componentsinthe N∗(1440)canbringaboutareconciliationoftheconstituentquarkmodelwiththelargeempirical decaywidthoftheN∗(1440)[20,34]. From a recentstudy [35] of the strong near-thresholdenhancementof pp → nK+Σ+ cross section,theextraordinarylargecouplingofthe∆∗(1620)toρN obtainedfromtheπ+p → Nππ isconfirmed. Doesthe∆∗(1620)containalargeρN molecularcomponentorrelatetosomeρN dynamical generated state? If so, how about its SU(3) decuplet partners? In fact, from PDG compilation[22] of baryonresonances,there are alreadysomeindicationsfora vector-meson- baryonSU(3)decuplet.Whilethe∆∗(1620)1/2−isabout85MeVbelowtheNρthreshold,there is a Σ∗(1750)1/2− about70 MeV below the NK∗ thresholdandthere is a Ξ∗(1950)?? about60 MeVbelowtheΛK∗ threshold. Iftheseresonancesareindeedthemembersofthe1/2− SU(3) decupletvector-meson-baryonS-wavestates,wewouldexpectalsoaΩ∗1/2− resonancearound 2160 MeV. All these baryon resonances can be searched for in high statistic data on relevant channelsfromvectorcharmoniumdecaysbyupcomingBES3experimentsinnearfuture. Therearemanyotherbaryonresonanceswhichareproposedtobemeson-baryonstates[36], i.e.,qqqqq¯regroupingintotwocolorlessclusters. 5. Conclusion Fortheproton,thereshouldbeatleastabout20%mixtureofthefive-quarkcomponentsinthe protontoreproduceitslargeu¯-d¯asymmetry(d¯−u¯ ≈0.12)ands-s¯asymmetry.Totelltherelative importanceofmesoncloudanddiquarkclustermixturesintheproton,morepreciseexperiments onthestrangenessradiusandstrangenessmagneticmomentoftheprotonareneeded. Thereshouldbemorefive-quarkcomponentsinexcitedbaryons.Thestudyof1/2−baryons seemstellingusthattheq¯qqqqinS-stateismorefavorablethanqqqwithL=1. Inotherwords, 6 forexcitedbaryons,theexcitationenergyforaspatialexcitationcouldbelargerthantodragout aqq¯ pairfromgluonfield. Whethertheq¯qqqqcomponentsareindiquarkclusterconfiguration or meson-baryon configuration depends on the strength of relevant diquark or meson-baryon correlations. ForN∗(1535)andits1/2−SU(3)nonetpartners,thediquarkclusterpictureforthe penta-quarkconfigurationgivesanaturalexplanationforthelongstandingmass-reverseproblem of N∗(1535), N∗(1440) and Λ∗(1405) resonances as well as the unusual decay pattern of the N∗(1535)resonance.For∆∗++(1620)andits1/2−SU(3)decupletpartners,theirSU(3)quantum numbers do not allow them to be formed from two good scalar diquarks plus a q¯. Then their q¯qqqqcomponentswouldbemainlyinmeson-baryonconfigurations. Distinctivepatternsarepredictedbyquenchedquarkmodelsandunquenchedquarkmodels forthelowestSU(3)baryonnonetwithspinparityJP =1/2−. Whilethequenchedquarkmodels predict the lowest 1/2− Σ∗ resonance to be above 1600 MeV, the unquenched quark models predictittobearoundΣ∗(1385)energy. Byre-examiningsomeolddataofthe K−p → Λπ+π− reaction,itisfoundthatbesidesthewellestablishedΣ∗(1385)with JP = 3/2+, thereisindeed somesomeevidenceforthepossibleexistenceofanewΣ∗resonancewithJP =1/2−aroundthe same massbutwith broaderdecaywidth. Therearealso indicationsforsuchpossibilityin the J/ψ →Σ¯Λπandγn → K+Σ∗− reactions. Atpresent,theevidenceisnotverystrong. Therefore, high statistics studies on the relevant reactions, such as K−p → πΣ∗, γN → KΣ∗, ψ → Σ¯Σ∗ withΣ∗ →ΛπorΣπ,areurgedtobeperformedbyforthcomingexperimentsatJPARC,CEBAF, BEPCII,etc.,toclarifythesituation. AcknowledgementsIwouldliketothankD.O.Riska,B.C.Liu,J.J.Xie,C.S.An,J.J.Wu,F.X.Wei, X.Cao, S.Dulat and H.C.Chiang for collaborationson relevantissues reported here, and thank the Institute for Nuclear Theory at the University of Washington for its hospitality during the completionofthispaper. ThisworkispartlysupportedbytheNationalNaturalScienceFoun- dationofChina(NSFC)undergrantsNos. 10875133,10821063,10635080,andbytheChinese Academy of Sciences (KJCX3-SYW-N2), and by the Ministry of Science and Technology of China(2009CB825200). References [1] G.T.Garvey,J.C.Peng,Prog.Part.Nucl.Phys.47(2001)203,andreferencestherein. [2] J.P.Speth,A.W.Thomas,Adv.Nucl.Phys.24(1997)93,andreferencestherein. [3] B.S.Zou,D.O.Riska,Phys.Rev.Lett.95(2005)072001;D.O.Riska,B.S.Zou,Phys.Lett.B636(2006)265; C.S.An,D.O.Riska,B.S.Zou,Phys.Rev.C73(2006)035207. [4] F.X.Wei,B.S.Zou,Phys.Lett.B660(2008)501;arXiv:0807.2324[hep-ph]. [5] D.H.BeckandR.D.McKeown,Ann.Rev.Nucl.Part.Sci.51(2001)189,andreferencestherein. [6] R.Youngetal.,Phys.Rev.Lett.97(2006)102002. [7] S.Baunacketal.,Phys.Rev.Lett.102(2009)151803. [8] B.C.Liu,B.S.Zou,Phys.Rev.Lett.96(2006)042002;ibid,98(2007)039102. [9] L.S.Geng,E.Oset,B.S.ZouandM.Doring,Phys.Rev.C79(2009)025203. [10] M.Duggeretal.,Phys.Rev.Lett.96(2006)062001. [11] X.Cao,X.G.Lee,Phys.Rev.C78(2008)035207. [12] J.J.Xie,B.S.Zou,H.C.Chiang,Phys.Rev.C77(2008)015206. [13] X.Cao,J.J.Xie,B.S.ZouandH.S.Xu,Phys.Rev.C80(2009)025203. [14] A.Sibirtsevetal.,Eur.Phys.J.A29(2006)363. [15] A.Zhangetal.,HighEner.Phys.Nucl.Phys.29(2005)250. [16] C.S.AnandD.O.Riska,Eur.Phys.J.A37(2008)263 [17] C.S.AnandB.S.Zou,Eur.Phys.J.A39(2009)195 [18] Q.B.LiandD.O.Riska,Nucl.Phys.A766(2006)172 [19] Q.B.LiandD.O.Riska,Phys.Rev.C73(2006)035201 7 [20] Q.B.LiandD.O.Riska,Phys.Rev.C74(2006)015202 [21] C.S.An,Q.B.Li,D.O.RiskaandB.S.Zou,Phys.Rev.C74(2006)055205,Erratum-ibid.C79(2007)069901. [22] ParticleDataGroup,C.Amsleretal.,Phys.Lett.B667(2008)1. [23] B.S.Zou,Nucl.Phys.A790(2007)110;Int.J.Mod.Phys.A21(2006)835;andreferencestherein. [24] D.Asneretal.,Int.J.Mod.A24(2009)499,arXiv:0809.1869. [25] J.J.Wu,S.DulatandB.S.Zou,Phys.Rev.D80(2009)017503. [26] C.HelminenandD.O.Riska,Nucl.Phys.A699(2002)624. [27] D.Jido,J.A.Oller,E.Oset,A.RamosandU.G.Meissner,Nucl.Phys.A725(2003)181. [28] D.O.Huwe,Phys.Rev.181(1969)1824. [29] J.J.Wu,S.DulatandB.S.Zou,arXiv:0909.1380[hep-ph]. [30] T.S.Mastetal.,Phys.Rev.D7(1973)5. [31] K.Hicksetal.[LEPSCollaboration],Phys.Rev.Lett.102(2009)012501. [32] Y.Oh,C.M.KoandK.Nakayama,Phys.Rev.C77(2008)045204. [33] PuzeGao,J.J.WuandB.S.Zou,arXiv:1001.0805[nucl-th]. [34] B.Julia-DiazandD.O.Riska,Nucl.Phys.A780(2006)175. [35] J.J.Xie,B.S.Zou,Phys.Lett.B649(2007)405. [36] E.Osetetal.,Chin.Phys.C33(2009)1132,arXiv:0906.3801[hep-ph]. 8