Fitting the Fermi-LAT GeV excess: on the importance of the propagation of electrons from dark matter 5 1 0 2 n a J Thomas Lacroix∗ 9 UPMC-CNRS,UMR7095,Institutd’AstrophysiquedeParis,98bisboulevardArago,75014 2 Paris,France E-mail: [email protected] ] E H AnexcessofgammaraysatGeVenergieshasbeendetectedintheFermi-LATdata. Thissignal . h comes from a narrow region around the Galactic Center and has been interpreted as possible p - evidenceforlight(30GeV)darkmatterparticles. Focussingonthepromptgamma-rayemission, o r previous works found that the best fit to the data corresponds to annihilations proceeding into t s b quarks, with a dark matter profile going as r−1.2. We show that this is not the only possible a [ annihilationset-up.Morespecifically,weshowhowincludingthecontributionstothegamma-ray spectrumfrominverseComptonscatteringandbremsstrahlungfromelectronsproducedindark 1 v matterannihilations,andundergoingdiffusionthroughtheGalacticmagneticfield,significantly 5 affects the spectrum for leptonic final states. This drastically changes the interpretation of the 8 4 excessintermsofdarkmatter. 7 0 . 1 0 5 1 : v i X r a FrontiersofFundamentalPhysics14 15-18July2014 AixMarseilleUniversity(AMU)Saint-CharlesCampus,Marseille,France ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ FittingtheFermi-LATGeVexcess: ontheimportanceofthepropagationofelectronsfromdarkmatter ThomasLacroix 1. Introduction: theGalacticCentergamma-rayexcess AnexcessofgammaraysfromtheGalacticCenter(GC)hasbeendetectedintheFermi-LAT databetweenroughly0.1and10GeV[1,2,3,4,5]. Thisexcesshasaspatialextensionsmallerthan 10◦×10◦,andissphericallysymmetric. Itwasobtainedbysubtractingtothedataknownsources andatemplateforthebackgrounddiffuseemissionprovidedbytheFermiCollaboration. Although this background modelling procedure has been debated, the picture that has emerged seems to be robust. Thereisavarietyofastrophysicalexplanationsfortheexcess,butaninterpretationinterms ofdarkmatter(DM)isneverthelesspossible. Thebestfittotheexcessquotedintheliteraturehasbeenobtainedfor30GeVDMannihilating intobb¯ (Fig.1,topleftpanel),withacrosssectionof2×10−26 cm3 s−1. Thedataalsopointtoa density profile ρ ∝r−1.2. A mixture of 90% leptons and 10% b quarks gives a relatively good fit (Fig.1,toprightpanel),whilethefitisbadforafinalstatecontaining100%leptons(Fig.1,bottom panel). Heretheterm“leptons”referstodemocraticannihilationintoleptons,i.e.acombinationof thee+e−,µ+µ−,τ+τ− finalstates,with1/3oftheannihilationsintoeachofthesechannels. Consequently, final states of DM annihilation containing only leptons have not been consid- ered viable when interpreting the GeV excess in terms of DM. However, these conclusions were obtainedtakingintoaccountonlythepromptgamma-rayemission,namelythefinal-stateradiation (FSR)single-photonemission,andtheimmediatehadronizationanddecayoftheDMannihilation products into photons. Nevertheless, electrons and positrons are also by-products of DM anni- hilations, and they produce gamma rays via inverse Compton (IC) scattering off photons of the interstellar radiation field and bremsstrahlung. It had been argued by the authors of Refs. [6, 7] that the contributions of these secondary emissions to the gamma-ray spectrum should not be ne- glectedandshouldleadtocorrections. Ontopofthat,diffusionofelectronsandpositronsthrough the Galactic magnetic field must be taken into account when modelling these emissions. Here we showthatthesecontributionsdonotjustgivecorrectionsbuttheytotallychangetheinterpretation oftheexcessintermsofDM. 2. DiffusionofelectronsandpositronsfromDM In order to compute the gamma-ray spectrum from DM-induced electrons and positrons, we solvethediffusion-lossequationofcosmicrays. Assumingasteadystate,theequationreads[8] ∂ K∇2ψ+ (b ψ)+q=0, (2.1) tot ∂E whereψ((cid:126)x,E)isthecosmic-rayspectrumafterpropagation,K isthediffusioncoefficient: K(E)= K (E/E )δ withE =1GeV,b (E)isthetotalenergylossrate(IC,synchrotron,bremsstrahlung) 0 0 0 tot andq((cid:126)x,E)isthesourcetermforDMannihilations,proportionaltoρ2. Tosolvetheequation,we usethesemi-analyticmethoddescribedinRef.[8]. Inthisapproach,thespectrumofelectronsand positronsafterdiffusionisgivenby κ (cid:90) ∞ dn ψ((cid:126)x,E)= I˜(λ (E,E )) (E )dE , (2.2) (cid:126)x D S S S b (E) dE tot E 2 FittingtheFermi-LATGeVexcess: ontheimportanceofthepropagationofelectronsfromdarkmatter ThomasLacroix m =30GeV,b m =10GeV,l+b DM DM promptonly promptonly ) ) 1− 1− s s 2− 2− m m c c V V (Ge 10-7 (Ge 10-7 Eγ Eγ d d n/ n/ d d 2Eγ 2Eγ 10-1 100 101 10-1 100 101 Eγ(GeV) Eγ(GeV) m =10GeV,leptons DM promptonly ) 1− s 2− m c V (Ge 10-7 Eγ d n/ d 2Eγ 10-1 100 101 Eγ(GeV) Figure 1: Best fit to the spectrum of the residual extended emission in the 7◦×7◦ region around the GC, for 30 GeV DM annihilating into 100% b quarks (top left panel), and 10 GeV DM annihilating into 90% leptonsand10%bquarks(toprightpanel),and100%leptons(bottompanel). Thebest-fitcrosssectionis ∼2×10−26cm3s−1. Thedatapointsaretakenfrom[3]. whereκ =(1/2)(cid:104)σv(cid:105)(ρ /m )2,with(cid:104)σv(cid:105)theannihilationcrosssection,ρ theDMdensityin (cid:12) DM (cid:12) the Solar neighborhood, and m the DM mass. I˜ is the so-called halo function that contains all DM (cid:126)x theinformationondiffusion, throughthediffusionlengthλ (E,E )thatdependsontheinjection D S energy E and the energy after propagation E. The halo function is convolved with the injection S spectrum dn/dE. The most difficult step of the resolution is to compute the halo function in the context of a cuspy DM profile. For that we used the method relying on Green’s functions. The halo function is thus given by the convolution over the diffusion zone (DZ) of the Green’s func- tion G((cid:126)x,E;(cid:126)x ,E )≡G((cid:126)x,(cid:126)x ,λ (E,E )) of the diffusion-loss equation and the square of the DM S S S D S density[8] (cid:90) (cid:18)ρ((cid:126)x )(cid:19)2 I˜(λ (E,E ))= d(cid:126)x G((cid:126)x,E;(cid:126)x ,E ) S . (2.3) (cid:126)x D S S S S ρ DZ (cid:12) Thedifficultywiththisintegralistwofold. Firstofall,todealwiththesteepnessoftheDMprofile, we used logarithmic steps. Second, the halo function must boil down to (ρ/ρ )2 when diffusion (cid:12) becomes negligible, that is when λ → 0 (i.e. E → E ). The problem is that in this regime, G D S becomes infinitely peaked, and the sampling of the integral must be carefully chosen in order not tomissthepeak. ThesolutionistodefinedifferentregimesforGdependingontheratioofλ and D 3 FittingtheFermi-LATGeVexcess: ontheimportanceofthepropagationofelectronsfromdarkmatter ThomasLacroix thedistancetotheGC,asdescribedindetailin[9]. OnceI˜hasbeencomputedwiththisdedicated treatment of diffusion on small scales, one can compute the IC and bremsstrahlung gamma-ray fluxesfromelectronsandpositrons. 3. FittingtheFermi-LATGeVexcesswiththeleptonicchannels Weusedfixedvaluesforthequantitiesdescribingtheinterstellarmedium(themagneticfield and the gas density) that correspond to average values for the losses in the GC region. In Fig. 2 weshowthatfordemocraticannihilationintoleptons,thecontributionsfrompromptemission,IC and bremsstrahlung are of the same order of magnitude, and they combine to give an excellent fit totheexcess,withabest-fitcrosssectionof(cid:104)σv(cid:105)=0.86×10−26cm3s−1. Thisisaveryimportant result, since it means that 30 GeV DM annihilating into bb¯ is not the only possible annihilation set-up,andthatDMcanannihilateintoleptons. ThisresultisdiscussedinmoredetailinRef.[10]. We also show in Fig. 3 (left panel) that including the contributions from IC and bremsstrahlung doesnotsignificantlyaffectthespectrumforthebb¯ channel,exceptatlowenergies. mDM=10GeV,B=3µG,ngas=3cm−3,leptons prompt bremsstrahlung IC ) prompt+IC+brem 1− s 2− m c V Ge E(γ10-7 d n/ d 2Eγ 10-1 100 101 Eγ(GeV) Figure2: Spectrumoftheresidualextendedemissioninthe7◦×7◦ regionaroundtheGC.Thedatapoints are taken from [3]. The prompt (black dashed), IC (green dashed-dotted) and bremsstrahlung (red dotted) emissions from 10 GeV DM democratically annihilating into leptons add up to give a very good fit to the data,asshownbytheblacksolidline,withabest-fitcrosssectionof(cid:104)σv(cid:105)=0.86×10−26cm3s−1. Therefore, the effect of including the IC and bremsstrahlung contributions is maximal for democratic annihilation into leptons. However, the authors of Ref. [11] used the AMS data to set constraints on the leptonic channels, which exclude annihilations into e+e− and impose that the branching ratio into µ+µ− should not exceed 25%. We do not discuss the validity of these constraintshere, butweshowinFig.3(rightpanel)thebestfittotheexcessobtainedwithafinal stateofDMannihilationcontaining25%µ+µ−and75%τ+τ−. Withsuchbranchingratios,thefit is marginally good, with an effect of the secondary contributions to the gamma-ray spectrum less significantthanfordemocraticannihilation. Finally, a very important test of the leptonic scenario is the morphology of the emission. In- deed, due to spatial diffusion, the IC and bremsstrahlung emissions are more extended than the prompt component, and their morphology depends on the observed energy. This may allow one 4 FittingtheFermi-LATGeVexcess: ontheimportanceofthepropagationofelectronsfromdarkmatter ThomasLacroix mDM=30GeV,B=3µG,ngas=3cm−3,b mDM=10GeV,B=3µG,ngas=3cm−3,1/4mu+3/4tau promptonly promptonly prompt+IC+brem prompt+IC+brem ) ) 1− 1− s s 2− 2− m m c c V V (Ge 10-7 (Ge 10-7 Eγ Eγ d d n/ n/ d d 2Eγ 2Eγ 10-1 100 101 10-1 100 101 Eγ(GeV) Eγ(GeV) Figure3: BestfitstotheFermiresidualwiththegamma-rayspectrumfromannihilationsof30GeVDM particles into 100% bb¯ (left panel), and 10 GeV DM annihilating into 25% µ+µ− and 75% τ+τ− (right panel). Thebest-fitcrosssectionis∼2×10−26cm3s−1fortheleftpanel,and∼1×10−26cm3s−1forthe rightpanel. to set constraints on the annihilation channel. Shown in Fig. 4 (left panel) is the gamma-ray flux plotted against latitude, for the best-fit parameters corresponding to the spectrum of Fig. 2, and E =0.1 GeV. Above a few degrees the morphology should be compatible with the one found in γ the literature, and corresponding to prompt emission. However, between O(0.1) and O(1)◦, the fluxprofileisshallowerthanthatofthepromptcomponent,whichmightleadtoatensionbetween the flux from the leptonic channels and the morphology from the literature. However, 0.1 GeV is belowthelowestenergydatapoint(around0.3–0.4GeV),andthesecondaryemissionsdominateat lowenergy. Itturnsoutthatat1GeV,thetensionbetweenthetotalfluxfromtheleptonicchannels andthemorphologyofthepromptemissionismuchweaker,asshowninFig.4(rightpanel). 10-2 mDM=10GeV,B=3µG,ngas=3cm−3,Eγ=0.1GeV 10-2 mDM=10GeV,B=3µG,ngas=3cm−3,Eγ=1.0GeV prompt prompt 10-3 prompt+IC+brem 10-3 prompt+IC+brem ) ) 1sr− 10-4 1sr− 10-4 21ms−− 10-5 21ms−− 10-5 Vc 10-6 Vc 10-6 Ge Ge dn(dEdΩγ10-7 dn(dEdΩγ10-7 2Eγ 10-8 2Eγ 10-8 10-9 10-9 10-2 10-1 100 101 102 10-2 10-1 100 101 102 b(deg) b(deg) Figure4: Gamma-rayfluxfromDMannihilatingexclusivelyintoleptonsdemocratically, asafunctionof latitudeb,forgamma-rayenergiesof0.1GeV(leftpanel)and1GeV(rightpanel). Conclusion The Fermi-LAT GeV excess is a strong case for DM, and annihilations of 30 GeV particles 5 FittingtheFermi-LATGeVexcess: ontheimportanceofthepropagationofelectronsfromdarkmatter ThomasLacroix into bb¯ provide the simplest set-up a priori. However, it is very important to take into account all relevantemissionprocessesandspatialdiffusion. Includingalltheseprocessesdrasticallychanges the interpretation of the excess in terms of DM. Therefore, we showed that bb¯ is not the only possible channel and DM can in fact annihilate into leptons. Finally, the morphology below ∼1◦ atlowenergiescanhelptodiscriminatebetweentheleptonicandbb¯ channels. Acknowledgments I thank Céline Bœhm and Joseph Silk for a fruitful collaboration on this project. This research has beensupportedatIAPbytheERCProjectNo.267117(DARK)hostedbyUniversitéPierreetMarieCurie (UPMC)-Paris6andatJHUbyNSFGrantNo.OIA-1124403.ThisworkhasbeenalsosupportedbyUPMC andSTFC.Finally,thisprojecthasbeencarriedoutintheILPLABEX(ANR-10-LABX-63)andhasbeen supported by French state funds managed by the ANR, within the Investissements d’Avenir programme (ANR-11-IDEX-0004-02). References [1] V.VitaleandA.Morselli,IndirectSearchforDarkMatterfromthecenteroftheMilkyWaywiththe Fermi-LargeAreaTelescope,ArXive-prints(2009)[astro-ph/0912.3828]. [2] D.HooperandT.Linden,OntheOriginoftheGammaRaysfromtheGalacticCenter,Phys.Rev.D 84(2011)123005[astro-ph/1110.0006]. [3] C.GordonandO.Macias,DarkMatterandPulsarModelConstraintsfromGalacticCenter Fermi-LATGammaRayObservations,Phys.Rev.D88(2013)083521[astro-ph/1306.5725]. [4] K.N.Abazajian,N.Canac,S.HoriuchiandM.Kaplinghat,AstrophysicalandDarkMatter InterpretationsofExtendedGammaRayEmissionfromtheGalacticCenter,Phys.Rev.D90(2014) 023526[astro-ph/1402.4090]. [5] T.Daylan,D.P.Finkbeiner,D.Hooper,T.Linden,S.K.N.Portillo,N.L.RoddandT.R.Slatyer,The CharacterizationoftheGamma-RaySignalfromtheCentralMilkyWay: ACompellingCasefor AnnihilatingDarkMatter,ArXive-prints(2014)[astro-ph/1402.6703]. [6] Fermi-LATCollaboration,ConstraintsontheGalacticHaloDarkMatterfromFermi-LATDiffuse Measurements,ApJ761(2012)91[astro-ph/1205.6474]. [7] M.Cirelli,P.D.SerpicoandG.Zaharijas,Bremsstrahlunggammaraysfromlightdarkmatter,JCAP 11(2013)35[astro-ph/1307.7152]. [8] T.Delahaye,R.Lineros,F.Donato,N.FornengoandP.Salati,PositronsfromDarkMatter AnnihilationintheGalacticHalo: TheoreticalUncertainties,Phys.Rev.D77(2008)063527 [astro-ph/0712.2312]. [9] T.Lacroix,C.BœhmandJ.Silk,ProbingadarkmatterdensityspikeattheGalacticCenter,Phys. Rev.D89(2014)063534[astro-ph/1311.0139]. [10] T.Lacroix,C.BœhmandJ.Silk,FittingtheFermi-LATGeVexcess: Ontheimportanceofincluding thepropagationofelectronsfromdarkmatter,Phys.Rev.D90(2014)043508 [astro-ph/1403.1987]. [11] T.Bringmann,M.VollmannandC.Weniger,Updatedcosmic-rayandradioconstraintsonlightdark matter: ImplicationsfortheGeVgamma-rayexcessattheGalacticcenter,ArXive-prints(2014) [astro-ph/1406.6027]. 6