ebook img

Fish-Eye Observing with Phased Array Radio Telescopes PDF

220 Pages·2010·10.66 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fish-Eye Observing with Phased Array Radio Telescopes

Fish-Eye Observing with Phased Array Radio Telescopes PROEFSCHRIFT terverkrijgingvandegraadvandoctor aandeTechnischeUniversiteitDelft, opgezagvandeRectorMagnificusprof.ir.K.C.A.M.Luyben, voorzittervanhetCollegevoorPromoties, inhetopenbaarteverdedigenopdinsdag2maart2010om12:30uur door StefanJeroenWIJNHOLDS natuurkundigingenieur doctorandusindesterrenkunde geborenteGroningen. Ditproefschriftisgoedgekeurddoordepromotor: Prof.dr.ir.A.J.vanderVeen Samenstellingpromotiecommissie: RectorMagnificus voorzitter Prof.dr.ir.A.J.vanderVeen TechnischeUniversiteitDelft,promotor Prof.dr.ir.J.Biemond TechnischeUniversiteitDelft Prof.dr.ir.M.Verhaegen TechnischeUniversiteitDelft Prof.dr.A.G.deBruyn RijksuniversiteitGroningen Prof.dr.W.N.Brouw RijksuniversiteitGroningen Prof.dr.Ir.M.Moonen KatholiekeUniversiteitLeuven,Belgie¨ Prof.dr.M.Viberg ChalmersUniversityofTechnology, Go¨teborg,Zweden Copyright c 2010byS.J.Wijnholds (cid:13) All rights reserved. No part of the material protected by this copyrightnotice may bereproducedorutilizedinanyformorbyanymeans,electronicormechanical,in- cludingphotocopying,recordingorbyanyinformationstorageandretrievalsystem, withoutthe priorpermissionofthe author. An exceptionis madeforretrievalfrom theWorldWideWebforpersonaluseonly. PrintedinTheNetherlandsbyWo¨hrmannPrintService TypesetbytheauthorwiththeLATEXDocumentationSystem. Authoremail:[email protected] PublishedanddistributedbyS.J.Wijnholds ISBN978-90-9025180-6 Fish-Eye Observing with Phased Array Radio Telescopes Stefan J. Wijnholds Contents Preface ix 1 Introduction 1 1.1 Phasedarraytechnology . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 LOFAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Hierarchicalsystemarchitecture . . . . . . . . . . . . . . . . . . . . 8 1.4 Scopeofthisthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Outlineandsummaryofmainresults . . . . . . . . . . . . . . . . . . 11 1.6 Publicationsandothercontributions . . . . . . . . . . . . . . . . . . 14 2 CalibrationandimagingwithLOFAR 17 2.1 Coordinatesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1 Directionofarrival . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.2 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.3 Antennalocations. . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Highlightsfromearlyprototypes . . . . . . . . . . . . . . . . . . . . 20 2.2.1 TheTenHeterogeneousElementTestArray . . . . . . . . . . 20 2.2.2 TheLOFARPrototypeStation . . . . . . . . . . . . . . . . . 22 2.2.3 TheInitialTestStation . . . . . . . . . . . . . . . . . . . . . 24 2.2.4 CoreStation10 . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Stationcalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.2 Stationcalibrationpipeline . . . . . . . . . . . . . . . . . . . 33 2.3.3 Demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4 Fish-eyeimaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4.1 DFTversusleastsquaresimaging . . . . . . . . . . . . . . . 39 2.4.2 Statisticalperformance . . . . . . . . . . . . . . . . . . . . . 41 2.4.3 All-skyleastsquaressynthesisimaging . . . . . . . . . . . . 43 v vi CONTENTS 3 Datamodel 47 3.1 Physicalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Signalprocessingmodels . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.1 Shorttermcovariancematrix . . . . . . . . . . . . . . . . . . 53 3.2.2 Polarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2.3 Commonlyuseddatamodels . . . . . . . . . . . . . . . . . . 57 3.3 Noisesubspaceandsignalsubspace . . . . . . . . . . . . . . . . . . 58 3.4 Narrowbandassumption . . . . . . . . . . . . . . . . . . . . . . . . 61 3.5 Spatialfilteringofsourcesignals . . . . . . . . . . . . . . . . . . . . 66 3.5.1 Scalarbeamforming . . . . . . . . . . . . . . . . . . . . . . 66 3.5.2 Arrayresponse . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.6 Fromsnapshotstosynthesisobservations . . . . . . . . . . . . . . . 70 4 Cramer-RaoBound 73 4.1 DefinitionoftheCRB . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 AnalyticexpressionsfortheCRB . . . . . . . . . . . . . . . . . . . 76 4.2.1 PartitioningtheFIM . . . . . . . . . . . . . . . . . . . . . . 76 4.2.2 Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.3 ConstituentsoftheFIM . . . . . . . . . . . . . . . . . . . . 82 4.3 Impactofgainphaseconstraints . . . . . . . . . . . . . . . . . . . . 84 4.3.1 Constraintsonthegainphasesolution . . . . . . . . . . . . . 84 4.3.2 TheconstrainedCRB . . . . . . . . . . . . . . . . . . . . . . 85 4.3.3 Singlecalibrationsource . . . . . . . . . . . . . . . . . . . . 86 4.3.4 Multiplecalibrationsources . . . . . . . . . . . . . . . . . . 88 4.3.5 Applicationexample . . . . . . . . . . . . . . . . . . . . . . 89 4.3.6 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . 91 4.4 Dealingwithmissingdata . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.1 Problemstatement . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.2 DerivationoftheCRB . . . . . . . . . . . . . . . . . . . . . 93 4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 Calibration 99 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Problemstatement . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3 Algorithmdevelopment . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.1 Generalizedleastsquaresformulation . . . . . . . . . . . . . 104 5.3.2 Estimationofdirectionindependentgains . . . . . . . . . . . 105 5.3.3 Sourcepowerestimation . . . . . . . . . . . . . . . . . . . . 110 5.3.4 Estimatingreceivernoisepowers. . . . . . . . . . . . . . . . 110 5.3.5 DOAestimation . . . . . . . . . . . . . . . . . . . . . . . . 112 CONTENTS vii 5.3.6 (Weighted)alternatingleastsquares . . . . . . . . . . . . . . 113 5.3.7 Computationalcomplexity . . . . . . . . . . . . . . . . . . . 115 5.4 Algorithmvalidation . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.5 Non-diagonalnoisecovariancematrix . . . . . . . . . . . . . . . . . 124 5.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.5.2 ModificationoftheWALSmethod. . . . . . . . . . . . . . . 125 5.6 Summaryofthemainresults . . . . . . . . . . . . . . . . . . . . . . 129 6 Imaging 131 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.2 Fundamentalimaginglimits . . . . . . . . . . . . . . . . . . . . . . 133 6.2.1 Imaginganddeconvolution. . . . . . . . . . . . . . . . . . . 134 6.2.2 Effectivenoise . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.2.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.3 Leastsquaressynthesisimaging . . . . . . . . . . . . . . . . . . . . 153 6.3.1 Genericformulation . . . . . . . . . . . . . . . . . . . . . . 153 6.3.2 Scalarimagingwithknownornegligiblenoise . . . . . . . . 157 6.3.3 Scalarimagingwithunknownnoise . . . . . . . . . . . . . . 158 6.3.4 Fullpolarizedimagingwithknownornegligiblenoise . . . . 158 6.3.5 Fullpolarizedimagingwithunknownnoise . . . . . . . . . . 160 6.3.6 Treatmentofmorecomplicatednoisemodels . . . . . . . . . 161 6.A Derivationofclosedformleastsquaresimagingsolutions . . . . . . . 161 6.A.1 Scalarimagingwithknownornegligiblenoise . . . . . . . . 161 6.A.2 Scalarimagingwithunknownnoise . . . . . . . . . . . . . . 163 6.A.3 Fullpolarizedimagingwithknownornegligiblenoise . . . . 166 6.A.4 Fullpolarizedimagingwithunknownnoise . . . . . . . . . . 168 7 Conclusionsandsuggestionsforfurtherresearch 171 7.1 Summaryofthemainresults . . . . . . . . . . . . . . . . . . . . . . 171 7.2 Suggestionsforfurtherresearch . . . . . . . . . . . . . . . . . . . . 174 7.2.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.2.2 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.3 TowardsSKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 A Abbreviationsandacronyms 181 B Notation 183 B.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 B.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 viii CONTENTS C Matrixproductrelations 185 References 187 Samenvatting 203 Abouttheauthor 207 Preface In some sense, this thesisis living proofthatanyplan is valid untilit is confronted withreality. Afterfollowingacrashcourseinradiotelescopeintegrationandtesting byJaapBregmanduringmyinternshipattheNetherlandsInstituteforRadioAstron- omy(ASTRON),IdecidedtoapplyforajobasresearchassistantwithASTRONin- steadofpursuingaPh.D.IthusstartedworkingonsystemtestingoftheearlyLOFAR (LowFrequencyArray)prototypesTHETA(TenHeterogeneousElementTestArray) andITS(InitialTestStation). Duringthisperiod,IspentevenmorehoursinJaap’s officeto learnthe tricksof the trade. The main goalof these prototypeswasa per- formanceevaluationofanantennaarrayinthefield. Thisnaturallyledtoanindepth study of in situ calibration of antenna arrays, on which I gave a status update dur- ingacalibrationworkshoponMay31,2005. Alle-JanvanderVeenwasoneofthe attendeestothatmeetingandinvitedmeforfurtherdiscussioninDelft. Thisledto anewseriesoffruitfuldiscussionsintroducingmetotheworldofsignalprocessing andultimatelytothisthesis. Iwouldthereforeliketoexpressmydeepestgratitudeto bothJaapandAlle-Janforalltheirguidance,supportandadvice. WorkingonabigprojectlikeLOFARimpliesthatthisresearchwasnotdonein splendidisolation. IwouldthereforeliketothankmycolleaguesatASTRONforall inspiringconversations,theirsupportonthehardwareandsoftwareneededtodothe measurements and for creating a pleasant environmentto work in. Taking the risk of regretfulomissions, I would like to thank a few persons more specifically. This research was, to a considerable extent, driven by the “features” found in the data obtainedfromthe prototypestations. These measurementswould nothave beenso successfulwithoutthehardwaresupportbyYdeKoopman,GijsSchoonderbeek,An- dreGunstandMennoNordenandthesoftwaresupportbyKlaas-JanWierengaand ChrisBroekema. ITSrequiredafocusedone-weekdebugsessiontoalignhardware and on-lineand off-linesoftware togetherwith Michiel Brentjens, who was always availableto reflectonnew ideasandchallengesaswell. Itwas morethanjustcon- venienttohaveAlbert-JanBoonstra,whograduatedundersupervisionofAlle-Janin 2005, sitting in the same building to discuss signalprocessing conceptsand issues. ix x Preface ThisresearchalsobenefittedfromtheinsightsofGerdeBruyn,JohanHamaker,Wim Brouw and Jan Noordam, who shared their lifelongexperiencewith the calibration and imaging challengesof the Westerbork Synthesis Radio Telescope (WSRT) and fromdiscussionswithRonaldNijboer. Thelatter,togetherwithAlbert-Jan,Janand Jaap,alsoprovidedthepersonalsupporttostartthisthesisprojectinthefirstplace. Althoughtherehasbeenconsiderablesynergybetweentheresearchpresentedin thisthesisandthedemandsfromtheLOFARproject,writingpapersandespecially writingathesisformsamajordistractionfromprojectwork. Iwouldthereforelike to thank Arnold van Ardenne, former director of the R&D department, Marco de Vos,formerLOFARprojectmanagerandsuccessorofArnold,andDionKant,group leaderofthesystemdesignandintegrationgroup,forsupportingmythesisworkby allowingme tospendtimeonthis. Especiallyin thelast year,thishasbeena great helpingettingthingsfinished. Finally,Iwouldliketothankthecommitteemembers,JanBiemond,MichelVer- haegen, Ger de Bruyn, Wim Brouw, Marc Moonen and Mats Viberg, for the time investedinthoroughlyreviewingmythesis. Thishasbeenagreathelpinimproving thequalityandreadabilityofthisthesis. StefanWijnholds Dwingeloo,TheNetherlands,January31,2010

Description:
Table 1.1: Observing modes supported by the RCUs. digital processing boards. require 16 times as many RCUs in the LOFAR system with a corresponding increase in other components like niques (ESPRIT) [95] to handle arrays affected by mutual coupling under the as- sumption that the array is
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.