Fish-Eye Observing with Phased Array Radio Telescopes PROEFSCHRIFT terverkrijgingvandegraadvandoctor aandeTechnischeUniversiteitDelft, opgezagvandeRectorMagnificusprof.ir.K.C.A.M.Luyben, voorzittervanhetCollegevoorPromoties, inhetopenbaarteverdedigenopdinsdag2maart2010om12:30uur door StefanJeroenWIJNHOLDS natuurkundigingenieur doctorandusindesterrenkunde geborenteGroningen. Ditproefschriftisgoedgekeurddoordepromotor: Prof.dr.ir.A.J.vanderVeen Samenstellingpromotiecommissie: RectorMagnificus voorzitter Prof.dr.ir.A.J.vanderVeen TechnischeUniversiteitDelft,promotor Prof.dr.ir.J.Biemond TechnischeUniversiteitDelft Prof.dr.ir.M.Verhaegen TechnischeUniversiteitDelft Prof.dr.A.G.deBruyn RijksuniversiteitGroningen Prof.dr.W.N.Brouw RijksuniversiteitGroningen Prof.dr.Ir.M.Moonen KatholiekeUniversiteitLeuven,Belgie¨ Prof.dr.M.Viberg ChalmersUniversityofTechnology, Go¨teborg,Zweden Copyright c 2010byS.J.Wijnholds (cid:13) All rights reserved. No part of the material protected by this copyrightnotice may bereproducedorutilizedinanyformorbyanymeans,electronicormechanical,in- cludingphotocopying,recordingorbyanyinformationstorageandretrievalsystem, withoutthe priorpermissionofthe author. An exceptionis madeforretrievalfrom theWorldWideWebforpersonaluseonly. PrintedinTheNetherlandsbyWo¨hrmannPrintService TypesetbytheauthorwiththeLATEXDocumentationSystem. Authoremail:[email protected] PublishedanddistributedbyS.J.Wijnholds ISBN978-90-9025180-6 Fish-Eye Observing with Phased Array Radio Telescopes Stefan J. Wijnholds Contents Preface ix 1 Introduction 1 1.1 Phasedarraytechnology . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 LOFAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Hierarchicalsystemarchitecture . . . . . . . . . . . . . . . . . . . . 8 1.4 Scopeofthisthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Outlineandsummaryofmainresults . . . . . . . . . . . . . . . . . . 11 1.6 Publicationsandothercontributions . . . . . . . . . . . . . . . . . . 14 2 CalibrationandimagingwithLOFAR 17 2.1 Coordinatesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1 Directionofarrival . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.2 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.3 Antennalocations. . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Highlightsfromearlyprototypes . . . . . . . . . . . . . . . . . . . . 20 2.2.1 TheTenHeterogeneousElementTestArray . . . . . . . . . . 20 2.2.2 TheLOFARPrototypeStation . . . . . . . . . . . . . . . . . 22 2.2.3 TheInitialTestStation . . . . . . . . . . . . . . . . . . . . . 24 2.2.4 CoreStation10 . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Stationcalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.2 Stationcalibrationpipeline . . . . . . . . . . . . . . . . . . . 33 2.3.3 Demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4 Fish-eyeimaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4.1 DFTversusleastsquaresimaging . . . . . . . . . . . . . . . 39 2.4.2 Statisticalperformance . . . . . . . . . . . . . . . . . . . . . 41 2.4.3 All-skyleastsquaressynthesisimaging . . . . . . . . . . . . 43 v vi CONTENTS 3 Datamodel 47 3.1 Physicalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Signalprocessingmodels . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.1 Shorttermcovariancematrix . . . . . . . . . . . . . . . . . . 53 3.2.2 Polarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2.3 Commonlyuseddatamodels . . . . . . . . . . . . . . . . . . 57 3.3 Noisesubspaceandsignalsubspace . . . . . . . . . . . . . . . . . . 58 3.4 Narrowbandassumption . . . . . . . . . . . . . . . . . . . . . . . . 61 3.5 Spatialfilteringofsourcesignals . . . . . . . . . . . . . . . . . . . . 66 3.5.1 Scalarbeamforming . . . . . . . . . . . . . . . . . . . . . . 66 3.5.2 Arrayresponse . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.6 Fromsnapshotstosynthesisobservations . . . . . . . . . . . . . . . 70 4 Cramer-RaoBound 73 4.1 DefinitionoftheCRB . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 AnalyticexpressionsfortheCRB . . . . . . . . . . . . . . . . . . . 76 4.2.1 PartitioningtheFIM . . . . . . . . . . . . . . . . . . . . . . 76 4.2.2 Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.3 ConstituentsoftheFIM . . . . . . . . . . . . . . . . . . . . 82 4.3 Impactofgainphaseconstraints . . . . . . . . . . . . . . . . . . . . 84 4.3.1 Constraintsonthegainphasesolution . . . . . . . . . . . . . 84 4.3.2 TheconstrainedCRB . . . . . . . . . . . . . . . . . . . . . . 85 4.3.3 Singlecalibrationsource . . . . . . . . . . . . . . . . . . . . 86 4.3.4 Multiplecalibrationsources . . . . . . . . . . . . . . . . . . 88 4.3.5 Applicationexample . . . . . . . . . . . . . . . . . . . . . . 89 4.3.6 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . 91 4.4 Dealingwithmissingdata . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.1 Problemstatement . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.2 DerivationoftheCRB . . . . . . . . . . . . . . . . . . . . . 93 4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 Calibration 99 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Problemstatement . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3 Algorithmdevelopment . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.1 Generalizedleastsquaresformulation . . . . . . . . . . . . . 104 5.3.2 Estimationofdirectionindependentgains . . . . . . . . . . . 105 5.3.3 Sourcepowerestimation . . . . . . . . . . . . . . . . . . . . 110 5.3.4 Estimatingreceivernoisepowers. . . . . . . . . . . . . . . . 110 5.3.5 DOAestimation . . . . . . . . . . . . . . . . . . . . . . . . 112 CONTENTS vii 5.3.6 (Weighted)alternatingleastsquares . . . . . . . . . . . . . . 113 5.3.7 Computationalcomplexity . . . . . . . . . . . . . . . . . . . 115 5.4 Algorithmvalidation . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.5 Non-diagonalnoisecovariancematrix . . . . . . . . . . . . . . . . . 124 5.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.5.2 ModificationoftheWALSmethod. . . . . . . . . . . . . . . 125 5.6 Summaryofthemainresults . . . . . . . . . . . . . . . . . . . . . . 129 6 Imaging 131 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.2 Fundamentalimaginglimits . . . . . . . . . . . . . . . . . . . . . . 133 6.2.1 Imaginganddeconvolution. . . . . . . . . . . . . . . . . . . 134 6.2.2 Effectivenoise . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.2.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.3 Leastsquaressynthesisimaging . . . . . . . . . . . . . . . . . . . . 153 6.3.1 Genericformulation . . . . . . . . . . . . . . . . . . . . . . 153 6.3.2 Scalarimagingwithknownornegligiblenoise . . . . . . . . 157 6.3.3 Scalarimagingwithunknownnoise . . . . . . . . . . . . . . 158 6.3.4 Fullpolarizedimagingwithknownornegligiblenoise . . . . 158 6.3.5 Fullpolarizedimagingwithunknownnoise . . . . . . . . . . 160 6.3.6 Treatmentofmorecomplicatednoisemodels . . . . . . . . . 161 6.A Derivationofclosedformleastsquaresimagingsolutions . . . . . . . 161 6.A.1 Scalarimagingwithknownornegligiblenoise . . . . . . . . 161 6.A.2 Scalarimagingwithunknownnoise . . . . . . . . . . . . . . 163 6.A.3 Fullpolarizedimagingwithknownornegligiblenoise . . . . 166 6.A.4 Fullpolarizedimagingwithunknownnoise . . . . . . . . . . 168 7 Conclusionsandsuggestionsforfurtherresearch 171 7.1 Summaryofthemainresults . . . . . . . . . . . . . . . . . . . . . . 171 7.2 Suggestionsforfurtherresearch . . . . . . . . . . . . . . . . . . . . 174 7.2.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.2.2 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.3 TowardsSKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 A Abbreviationsandacronyms 181 B Notation 183 B.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 B.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 viii CONTENTS C Matrixproductrelations 185 References 187 Samenvatting 203 Abouttheauthor 207 Preface In some sense, this thesisis living proofthatanyplan is valid untilit is confronted withreality. Afterfollowingacrashcourseinradiotelescopeintegrationandtesting byJaapBregmanduringmyinternshipattheNetherlandsInstituteforRadioAstron- omy(ASTRON),IdecidedtoapplyforajobasresearchassistantwithASTRONin- steadofpursuingaPh.D.IthusstartedworkingonsystemtestingoftheearlyLOFAR (LowFrequencyArray)prototypesTHETA(TenHeterogeneousElementTestArray) andITS(InitialTestStation). Duringthisperiod,IspentevenmorehoursinJaap’s officeto learnthe tricksof the trade. The main goalof these prototypeswasa per- formanceevaluationofanantennaarrayinthefield. Thisnaturallyledtoanindepth study of in situ calibration of antenna arrays, on which I gave a status update dur- ingacalibrationworkshoponMay31,2005. Alle-JanvanderVeenwasoneofthe attendeestothatmeetingandinvitedmeforfurtherdiscussioninDelft. Thisledto anewseriesoffruitfuldiscussionsintroducingmetotheworldofsignalprocessing andultimatelytothisthesis. Iwouldthereforeliketoexpressmydeepestgratitudeto bothJaapandAlle-Janforalltheirguidance,supportandadvice. WorkingonabigprojectlikeLOFARimpliesthatthisresearchwasnotdonein splendidisolation. IwouldthereforeliketothankmycolleaguesatASTRONforall inspiringconversations,theirsupportonthehardwareandsoftwareneededtodothe measurements and for creating a pleasant environmentto work in. Taking the risk of regretfulomissions, I would like to thank a few persons more specifically. This research was, to a considerable extent, driven by the “features” found in the data obtainedfromthe prototypestations. These measurementswould nothave beenso successfulwithoutthehardwaresupportbyYdeKoopman,GijsSchoonderbeek,An- dreGunstandMennoNordenandthesoftwaresupportbyKlaas-JanWierengaand ChrisBroekema. ITSrequiredafocusedone-weekdebugsessiontoalignhardware and on-lineand off-linesoftware togetherwith Michiel Brentjens, who was always availableto reflectonnew ideasandchallengesaswell. Itwas morethanjustcon- venienttohaveAlbert-JanBoonstra,whograduatedundersupervisionofAlle-Janin 2005, sitting in the same building to discuss signalprocessing conceptsand issues. ix x Preface ThisresearchalsobenefittedfromtheinsightsofGerdeBruyn,JohanHamaker,Wim Brouw and Jan Noordam, who shared their lifelongexperiencewith the calibration and imaging challengesof the Westerbork Synthesis Radio Telescope (WSRT) and fromdiscussionswithRonaldNijboer. Thelatter,togetherwithAlbert-Jan,Janand Jaap,alsoprovidedthepersonalsupporttostartthisthesisprojectinthefirstplace. Althoughtherehasbeenconsiderablesynergybetweentheresearchpresentedin thisthesisandthedemandsfromtheLOFARproject,writingpapersandespecially writingathesisformsamajordistractionfromprojectwork. Iwouldthereforelike to thank Arnold van Ardenne, former director of the R&D department, Marco de Vos,formerLOFARprojectmanagerandsuccessorofArnold,andDionKant,group leaderofthesystemdesignandintegrationgroup,forsupportingmythesisworkby allowingme tospendtimeonthis. Especiallyin thelast year,thishasbeena great helpingettingthingsfinished. Finally,Iwouldliketothankthecommitteemembers,JanBiemond,MichelVer- haegen, Ger de Bruyn, Wim Brouw, Marc Moonen and Mats Viberg, for the time investedinthoroughlyreviewingmythesis. Thishasbeenagreathelpinimproving thequalityandreadabilityofthisthesis. StefanWijnholds Dwingeloo,TheNetherlands,January31,2010
Description: