ebook img

First Steps in Numerical Analysis PDF

232 Pages·1998·0.679 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview First Steps in Numerical Analysis

CONTENTS Prefacetothesecondedition xi Prefacetothefirstedition xiii Prologue 1 1 Historical 1 2 NumericalAnalysistoday 2 3 Thisbook 3 ERRORS Step1 Sourcesoferror 4 1 Example 4 Step2 Approximationtonumbers 7 1 Numberrepresentation 7 2 Round-offerror 8 3 Truncationerror 8 4 Mistakes 8 5 Examples 8 Step3 Errorpropagationandgeneration 10 1 Absoluteerror 10 2 Relativeerror 10 3 Errorpropagation 11 4 Errorgeneration 11 5 Example 12 Step4 Floatingpointarithmetic 14 1 Additionandsubtraction 14 2 Multiplication 14 3 Division 15 4 Expressions 15 5 Generatederror 15 6 Consequences 15 vi CONTENTS Step5 Approximationtofunctions 18 1 TheTaylorseries 18 2 Polynomialapproximation 20 3 Otherseriesexpansions 20 4 Recursiveprocedures 20 NONLINEAREQUATIONS Step6 Nonlinearalgebraicandtranscendentalequations 23 1 Atranscendentalequation 23 2 Locatingroots 24 Step7 Thebisectionmethod 27 1 Procedure 27 2 Effectiveness 28 3 Example 28 Step8 Methodoffalseposition 30 1 Procedure 30 2 Effectivenessandthesecantmethod 31 3 Example 32 Step9 Themethodofsimpleiteration 34 1 Procedure 34 2 Example 34 3 Convergence 35 Step10 TheNewton-Raphsoniterativemethod 37 1 Procedure 37 2 Example 38 3 Convergence 39 4 Speedofconvergence 40 5 Thesquareroot 41 SYSTEMSOFLINEAREQUATIONS Step11 Solutionbyelimination 42 1 Notationanddefinitions 42 2 Theexistenceofsolutions 43 3 Gaussianeliminationmethod 44 4 Thetransformationoperations 45 5 Generaltreatmentoftheeliminationprocess 45 6 Numericalexample 48 CONTENTS vii Step12 Errorsandill-conditioning 51 1 Errorsinthecoefficientsandconstants 51 2 Round-offerrorsandnumbersofoperations 52 3 Partialpivoting 52 4 Ill-conditioning 53 Step13 TheGauss-Seideliterativemethod 56 1 Iterativemethods 56 2 TheGauss-Seidelmethod 56 3 Convergence 57 Step14 Matrixinversion* 59 1 Theinversematrix 59 2 Methodforinvertingamatrix 59 3 Solutionoflinearsystemsusingtheinversematrix 61 Step15 UseofLUdecomposition* 64 1 Procedure 64 2 Example 65 3 EffectinganLUdecomposition 66 Step16 Testingforill-conditioning* 69 1 Norms 69 2 Testingforill-conditioning 70 THEEIGENVALUEPROBLEM Step17 Thepowermethod 73 1 Powermethod 74 2 Example 74 3 Variants 75 4 Otheraspects 77 FINITEDIFFERENCES Step18 Tables 79 1 Tablesofvalues 79 2 Finitedifferences 80 3 Influenceofround-offerrors 80 Step19 Forward,backward,andcentraldifferencenotations 83 1 Theshiftoperator E 83 2 Theforwarddifferenceoperator(cid:49) 83 3 Thebackwarddifferenceoperator∇ 84 viii CONTENTS 4 Thecentraldifferenceoperatorδ 84 5 Differencedisplay 85 Step20 Polynomials 88 1 Finitedifferencesofapolynomial 88 2 Example 89 3 Approximationofafunctionbyapolynomial 89 INTERPOLATION Step21 Linearandquadraticinterpolation 92 1 Linearinterpolation 92 2 Quadraticinterpolation 94 Step22 Newtoninterpolationformulae 96 1 Newton’sforwarddifferenceformula 96 2 Newton’sbackwarddifferenceformula 96 3 UseofNewton’sinterpolationformulae 97 4 Uniquenessoftheinterpolatingpolynomial 98 5 AnalogywithTaylorseries 99 Step23 Lagrangeinterpolationformula 101 1 Procedure 101 2 Example 102 3 Notesofcaution 103 Step24 Divideddifferences* 104 1 Divideddifferences 104 2 Newton’sdivideddifferenceformula 105 3 Example 105 4 Errorininterpolatingpolynomial 106 5 Aitken’smethod 107 Step25 Inverseinterpolation* 110 1 Linearinverseinterpolation 110 2 Iterativeinverseinterpolation 110 3 Divideddifferences 111 CURVEFITTING Step26 Leastsquares 114 1 Theproblemillustrated 114 2 Generalapproachtotheproblem 115 3 Errors‘assmallaspossible’ 116 CONTENTS ix 4 Theleastsquaresmethodandnormalequations 116 5 Example 117 Step27 Leastsquaresandlinearequations* 122 1 Pseudo-inverse 122 2 Normalequations 123 3 QRfactorization 124 4 TheQRfactorizationprocess 126 Step28 Splines* 129 1 Constructionofcubicsplines 129 2 Examples 132 NUMERICALDIFFERENTIATION Step29 Finitedifferences 135 1 Procedure 135 2 Errorinnumericaldifferentiation 136 3 Example 137 NUMERICALINTEGRATION Step30 Thetrapezoidalrule 139 1 Thetrapezoidalrule 139 2 Accuracy 140 3 Example 141 Step31 Simpson’srule 143 1 Simpson’srule 143 2 Accuracy 144 3 Example 145 Step32 Gaussianintegrationformulae 146 1 Gausstwo-pointintegrationformula 146 2 OtherGaussformulae 147 3 ApplicationofGaussianquadrature 148 ORDINARYDIFFERENTIALEQUATIONS Step33 Single-stepmethods 149 1 Taylorseries 149 2 Runge-Kuttamethods 150 3 Example 151 x CONTENTS Step34 Multistepmethods 153 1 Introduction 153 2 Stability 154 Step35 Higherorderdifferentialequations* 156 1 Systemsoffirst-orderinitialvalueproblems 156 2 Numericalmethodsforfirst-ordersystems 157 3 Numericalexample 158 AppliedExercises 160 Appendix: Pseudo-code 163 AnswerstotheExercises 173 Bibliography 216 Index 217 PREFACE TO THE SECOND EDITION FirstStepsinNumericalAnalysis,originallypublishedin1978,isnowinitstwelfth impression. It has been widely used in schools, polytechnics, and universities throughouttheworld. However,wedecidedthatafteralifeofseventeenyearsin the classroom and lecture theatre, the contents of the book should be reviewed. Feedbackfrommanyusers,bothteachersandstudents,couldbeincorporated;and thedevelopmentofthesubjectsuggestedthatsomenewtopicsmightbeincluded. This Second Edition of the book is the outcome of our consideration of these matters. Thechangeswehavemadearenotveryextensive,whichreflectsourviewthat the syllabus for a first course in Numerical Analysis must continue to include mostofthebasictopicsintheFirstEdition. However,theresultofrapidchanges in computer technology is that some aspects are obviously less important than they were, and other topics have become more important. We decided that less shouldbesaidaboutfinitedifferences,forexample,butmoreshouldbesaidabout systemsoflinearequationsandmatrices. Newmaterialhasbeenaddedoncurve fitting(forexample, useofsplines), andmorehasbeengivenonthesolutionof differentialequations. ThetotalnumberofStepshasincreasedfrom31to35. Forthebenefitofbothteachersandstudents,additionalexerciseshavebeenset at the end of many of the Steps, and brief answers again supplied. Also, a set ofAppliedExerciseshasbeenincluded,tochallengestudentstoapplynumerical methods in the context of ‘real world’ applications. To make it easier for users to implement the given algorithms in a computer program, the flowcharts in the AppendixoftheFirstEditionhavebeenreplacedbypseudo-code. Themethodof organizingthematerialintoSTEPS(ofalengthsuitableforpresentationinoneor twohours)hasbeenretained,forthishasbeenapopularfeatureofthebook. We hope that these changes and additions, together with the new typesetting used, will be found acceptable, enhancing and attractive; and that the book will continuetobewidelyused. Manyoftheideaspresentedshouldbeaccessibleto studentsinmathematicsatthelevelofSeventhForminNewZealand,Year12in Australia,orGCEAlevelintheUnitedKingdom. Theadditionofmore(optional) starredStepsinthisEditionmakesthisbookalsosuitableforfirstandsecondyear introductoryNumericalAnalysiscoursesinpolytechnicsanduniversities. R.J.Hosking S.Joe D.C.Joyce J.C.Turner 1995 xii PREFACE TO THE FIRST EDITION Asitstitlesuggests,thisbookisintendedtoprovideanintroductiontoelementary conceptsandmethodsofNumericalAnalysisforstudentsmeetingthesubjectfor thefirsttime. Inparticular,theideaspresentedshouldbeaccessibleatthelevelof SeventhFormAppliedMathematicsinNewZealandoratAdvancedLevelG.C.E. intheUnitedKingdom. Weexpectthisbookwillalsobefoundusefulformany coursesinpolytechnicsanduniversities. For ease of teaching and learning, the material is divided into short ‘Steps’, mostofwhichwouldbeincludedinanyfirstcourse. Adiscussionofthecontent andplanofthebookisgiveninsection3ofthePrologue. R.J.Hosking D.C.Joyce J.C.Turner 1978 xiv

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.