Astronomy&Astrophysicsmanuscriptno.codella˙astroph (cid:13)c ESO2014 January28,2014 LettertotheEditor ⋆ First results from the CALYPSO IRAM-PdBI survey III. Monopolar jets driven by a proto-binary system in NGC1333-IRAS2A C.Codella1,A.J.Maury2,3,F.Gueth4,S.Maret5,A.Belloche6,S.Cabrit7,5,andPh.Andre´8 1 INAF,OsservatorioAstrofisicodiArcetri,LargoE.Fermi5,50125Firenze,Italy 2 Harvard-SmithsonianCenterforAstrophysics,60Gardenstreet,Cambridge,MA02138,USA 3 ESO,KarlSchwarzchildStr.2,85748GarchingbeiMu¨nchen,Germany 4 4 IRAM,300ruedelaPiscine,38406SaintMartind’He`res,France 1 5 UJF-Grenoble1/CNRS-INSU,InstitutdePlane´tologieetd’AstrophysiquedeGrenoble(IPAG)UMR5274,Grenoble,38041,France 0 6 Max-Planck-Institutfu¨rRadioastronomie,AufdemHu¨gel69,53121Bonn,Germany 2 7 LERMA,ObservatoiredeParis,CNRS,ENS,UPMC,UCP,61Av.del’Observatoire,75014Paris,France n 8 LaboratoireAIM-Paris-Saclay,CEA/DSM/Irfu-CNRS-Universite´ParisDiderot,CESaclay,91191Gif-sur-YvetteCedex,France a Receiveddate;accepteddate J 6 ABSTRACT 2 Context.Theearliestevolutionarystagesoflow-massprotostarsarecharacterisedbyhotandfastjetswhichremoveangularmomen- ] tumfromthecircumstellardisk,thusallowingmassaccretionontothecentralobject.However,thelaunchmechanismisstillbeing A debated. G Aims.Wewouldliketoexploithigh-angular (∼0′.′8)resolutionandhigh-sensitivityimagestoinvestigatetheoriginofprotostellar . jetsusingtypicalmoleculartracersofshockedregions,suchasSiOandSO. h Methods.Wemappedtheinner22′′oftheNGC1333–IRAS2AprotostarinSiO(5–4),SO(6 –5 ),andthecontinuumemissionat1.4 5 4 p mmusingtheIRAMPlateaudeBureinterferometerintheframeworkoftheCALYPSOIRAMlargeprogram. - Results.Forthefirsttime,wedisentangletheNGC1333–IRAS2AClass0objectintoaproto-binarysystemrevealingtwoprotostars o (MM1, MM2) separated by ∼ 560 AU, each of them driving their own jet, while past work considered a single protostar with a r st quadrupolaroutflow.Wereveal(i)aclumpy,fast(upto|V–VLSR|≥50kms−1),andblueshiftedjetemergingfromthebrightestMM1 source,and(ii)aslowerredshiftedjet,drivenbyMM2.Siliconmonoxideemissionisapowerfultracerofhigh-excitation(T ≥100 a kin K;n ≥105cm−3)jetsclosetothelaunchingregion.Atthehighestvelocities,SOappearstomimicSiOtracingthejets,whereasat [ H2 velocitiesclosetothesystemicone,SOisdominatedbyextendedemission,tracingthecavityopenedbythejet. 1 Conclusions.Bothjetsareintrinsicallymonopolar,andintermittentintime.ThedynamicaltimeoftheSiOclumpsis≤30–90yr, v indicatingthatone-sidedejectionsfromprotostarscantakeplaceonthesetimescales. 2 Keywords.Stars:formation–ISM:jetsandoutflows–ISM:molecules–ISM:individualobjects:NGC1333–IRAS2A 7 6 6 . 1. Introduction (e.g.vanDishoeck& Blake 1998).A typicalexampleisrepre- 1 sentedbySiO,whoseformationismainly(≥90%)attributedto 0 The so-called Class 0 objects represent the earliest low-mass 4 the sputtering of Si atoms from refractory core grains in high- 1 protostellarstagehaving(i)mostoftheirmassstillintheformof velocity (≥ 20 km s−1) shocks (e.g. Gusdorf et al. 2008ab), or denseenvelopes,and(ii)alifetime≤afew105yr(e.g.Andre´et : grainshatteringingrain-graincollisionsinsideJ-shocks(Guillet v al.2000;Evansetal.2009;Mauryetal.2011).Class0protostars etal.2010).Siliconmonoxidetracesshocksinsidejetswell,suf- i thenrepresentanideallaboratoryfortracingthepristinecondi- X feringminimalcontaminationfromlow-velocityswept-upmate- tionsoflow-massstarformation.Becauseofthepaucityofthe r rial(usuallytracedbylow-JCOemission),andisabletounam- a sub-arcsec (sub)mm observations required to probe the inner- biguouslyprobethemasslossprocess. most(≤100AU) regions,severalbasicquestionsremainopen, So far, a quite limited number of Class 0 jets has been ob- suchastheexistenceofmultiplesystems,orthelaunchingmech- servedatsub-arcsecondangularresolution(neededtodisentan- anismofprotostellarjets.Protostarsdrivefastjetssurroundedby gle the jet and the outflow cavities): HH211 (Lee et al. 2007, wide-anglewindsthatimpactthehigh-densityparentcloudgen- 2009, 2010), HH212 (Codella et al. 2007, Lee et al. 2008), eratingshock fronts,whichtriggerendothermicchemicalreac- IRAS04166+2706 (Tafalla et al. 2010), and L1448-C (Maury tionsandicegrainmantlesublimationorsputtering.Asaconse- etal.2010,Hiranoetal.2010).TheIRAMPlateaudeBurein- quence,severalmolecules(suchasH O,CH OH,andS-bearing 2 3 terferometer(PdBI)largeprogramCALYPSO1(Continuumand species) undergo significant enhancementsin their abundances Lines from Young ProtoStellar Objects) is correcting this sit- uation by providing the first sub-arcsecond statistical study of Send offprint requests to: C. Codella, e-mail: [email protected] inner jet properties in nearby low-luminosity Class 0 sources in combination with studies of the envelopes, disks, and mul- ⋆ BasedonobservationscarriedoutwiththeIRAMPlateaudeBure interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany),andIGN(Spain) 1 http://irfu.cea.fr/Projects/Calypso 1 Codellaetal.:Monopolarjetsdrivenbyaproto-binarysysteminNGC1333-IRAS2A Table1.Positionandintensityofthecontinuumpeaks. sources(herelabelledMM1,MM2,andMM3).Adetailedanal- ysisofthecontinuumemissionisbeyondthescopeofthepresent Source α(J2000)a δ(J2000)a Ipeak paper: it will be used to support the interpretation of the SiO 1.4mm (03h28m s) (+31◦14′′′) (mJybeam−1) andSOimages.Table1summarisespositionsand1.4mmpeak MM1 55.58 37.06 94(2) fluxes of the three continuum sources. The coordinates of the MM2 55.71 35.33 15(1) brightestone(MM1)areconsistentwiththepositionofIRAS2A MM3 55.50 34.75 21(1) previouslymeasuredusingtheVLA(3.6cm),SMA(0.8and1.3 mm), and BIMA (2.7 mm) telescopes (Rodr´ıguez et al. 1999; aThefituncertaintiesare4,14,and17masforMM1,MM2,and Jørgensenetal.2007;Looneyetal.2007).Inaddition,afainter MM3,respectively. andspatiallyunresolvedsource(MM2)isfound∼2′.′4(560AU) fromMM1intheSEdirection.BothMM1andMM2havealso been detected at 94 GHz in the framework of CALYPSO (see tiplicity structure. One of the best documentedCALYPSO tar- AppendixA):thespectralindexα(wherefluxdensityS ∝να) ν gets is NGC1333-IRAS2A (hereafterIRAS2A), located at 235 is∼2-2.5,consistentwiththatofaprotostar. pc2inthePerseusNGC1333cluster.ThesourceIRAS2Aispart Athirdsource(MM3)isdetected∼2′.′5 southofMM1.Its of a wider system containing IRAS2B (not investigated here), FWHPsizeis307masanditsnon-detectionat94GHz(witha located at ∼ 31′′. The IRAS2A luminosity is ∼ 10 L⊙, and it peakflux≤ 0.1mJybeam−1 implyingα≥ 4)challengesapro- was observed in continuum at cm (e.g. Reipurth et al. 2002), tostellarnature.Alternatively,MM3mightbeanoutflowfeature mm (Looney et al. 2000; Jørgensen et al. 2004a, 2007, 2009; due to dust heated by shocks travelling along the SiO jet (see Maury et al. 2010), and sub-mm wavelengths (e.g. Sandell & Sect.3.2). Knee 2001). The outflow activity was traced using single-dish telescopes and interferometers and several tracers of swept-up material(e.g.CO)andshocks(e.g.SiO,CH OH),revealingtwo 3.2.Differentjetsfromaproto-binarysystem 3 perpendicular outflows, directed NE-SW (PA ≃ 25◦; hereafter calledN-Sforsakeofclarity)andSE-NW(PA≃105◦;hereafter Figure1 showsthatSiO(5–4)emission is mainly confinedto a collimatedblueshiftedsouthernSiOjetwithaPAof25◦,emerg- E-W),bothoriginatingtowithinafewarcsecondsfromIRAS2A ingfromMM1,andextendingoutto∼4′′ (1000AU).TheSiO (e.g.Bachilleretal.1998;Knee&Sandell2000;Jørgensenetal. jet is narrow: after correction for the PdBI HPBW, the trans- 2004ab,2009;Wakelametal.2005;Perssonetal.2012;Plunkett verseFWHMis≃0′.′7±0′.′1(165AU)at∼700AUfromMM1, etal.2013).Theseoutflowsseemintrinsicallydifferent,theE-W whileitappearsevennarrower(beingspatiallyunresolved)close outflowbeingmorecollimatedandchemicallyricherthantheN- tothedrivingsource.Position-velocity(PV)diagramsalongthe Sone,supportingthepossibilitythatIRAS2Aisanunresolved N-Sjetaxis(Fig.2)showthatSiOemissionextendstoveryhigh proto-binary. blueshiftedvelocities,∼–50kms−1withrespecttoV 5=+6.5 LSR kms−1. 2. Observations The MM1 SiO jet is surprisingly asymmetric with a bright (up to 90 K in T scale, see e.g. Fig. 3) blueshifted emis- The source IRAS2A was observed with the IRAM PdB six- MB sion and no clear red counterpart (down to 1 K), suggesting a elementarrayinDecember2010andJanuary-February2011us- monopolarnature.Thepresenceofmonopolaroutflowshasre- ing both the A and C configurations. The shortest and longest centlybeenobservedbyFerna´ndez-Lo´pezetal.(2013)towards baselines are 19 m and 762 m, respectively, allowing us to re- the complex high-mass star forming region IRAS18162-2048. cover emission at scales from ∼ 8′′ down to 0′.′4 at 1.4 mm. In that case, the authorspropose precession and deflection due TheSiO(5–4)andSO(6 –5 )lines3at217104.98and219949.44 5 4 to high-density clumps to explain the asymmetric appearance. MHz,respectively,wereobservedusingtheWideX backendto In principle,asymmetries in ambientgas could affect emission cover a 4 GHz spectral window and to probe continuumemis- atlowvelocities(suchasswept-upgas,seee.g.Petyetal.2006), sion at a 2 MHz (∼ 2.6 km s−1 at 1.4 mm) spectral resolution. but not the jet emission. As far as we know, this is the first Calibration was carried out following standard procedures, us- timeaSiOmonopolarhigh-velocityjetejectedfromalow-mass ing GILDAS-CLIC4. Phase (rms)was ≤ 50◦ and 80◦ forthe A protostar has been observed. The lack of SiO redshifted emis- and C tracks, respectively, pwv was 0.5-1 mm (A) and ∼ 1–2 sion could be due to the lack of dust if the northerncavity has mm (C), and system temperatures were ∼ 100–160 K (A) and beencompletelyevacuatedbypreviousejections.However,the 150–250K(C).Thefinaluncertaintyontheabsolutefluxscale lackthehigh-velocityredshiftedemissioninSO(seeSect.3.3), is≤15%.Thetypicalrmsnoiseinthe2MHzchannelswas3–9 whoseabundanceincreasesduetopuregasphaseneutral-neutral mJybeam−1.Imageswereproducedusingrobustweighting,and reactions,seems to rule outthis hypothesis.As a consequence, restoredwithacleanbeamof0′.′81×0′.′69(PA=33◦). the bright blueshifted jet from MM1 argues that, intrinsically, one-sidedejectionsfromlow-massprotostarscanoccur,i.e.that 3. Resultsanddiscussion onesideoftheaccretingdiskisejectingmorematerialthanthe other.AN-Soutflowonalargescale(∼2′)waspreviouslyde- 3.1.Continuumemission tectedwithbothsingle-dishantennasandinterferometersusing CO(1–0) and (2–1)(e.g. Engargiola& Plambeck 1999),show- Emissionmapofthe1.4mmcontinuumisshowninFig.1.The ingextendedlobesatrelativelylowvelocity(|V–V |≤10km sourceIRAS2Aisfoundtobeassociatedwiththreecontinuum LSR s−1).Bipolarnon-collimatedN-Semissionhasbeenalsotraced 2 RecentestimatesofthedistancetoPerseusrangefrom220to350 pc.Hereweadopt235pcfollowingHirotaetal.(2008). 5 TheV ofIRAS2Aasgivenintheliteratureliesbetween+7.0km LSR 3 Spectroscopic parameters have been extracted from the Jet s−1 and+7.7kms−1 (e.g.Perssonetal.2012,andreferencestherein); PropulsionLaboratorymoleculardatabase(Pickettetal.1998). weadopt+6.5kms−1,accordingtoCALYPSOmeasurementsofhigh- 4 http://www.iram.fr/IRAMFR/GILDAS excitation(∼200K)hot-coretracers,Maretetal.(A&A,inpress). 2 Codellaetal.:Monopolarjetsdrivenbyaproto-binarysysteminNGC1333-IRAS2A Fig.1. Left panel: Contour plots of the IRAS2A continuum emission at 1.4 mm. The ellipse shows the PdBI synthesised beam (HPBW):0′.′81×0′.′69(PA=33◦).Firstcontoursandstepscorrespondto5σ(7.5mJybeam−1).Labelsindicatethemainsource (MM1)andtwoweakersources(MM2andMM3).Middlepanel:Contourmapofblue-(–39,+3kms−1)andredshifted(+11,+21 kms−1)SiO(5–4)emissionssuperimposedontheSiOatlow-velocity(+3,+11kms−1;blackcontours).Firstcontourscorrespond to 5σand10σ, followedbystepsof10σ.One σis 84(blue), 15(red),and12(black)mJy beam−1 kms−1. Crosses areforthe positionofthefourSiO clumps(A,B, C, andD;see Figs. 2andB.3).Magentatrianglesstandforthepositionsof MM1,MM2, andMM3.GreylinesarethedirectionsofthePVdiagramsshowninFigs.2andB.3.Rightpanel:SameasMiddlepanelforthe SO(6 -5 ),averagedover(–29,+3),(+11,+19),and(+3,+11)kms−1 fortheblue-,red-,andblack-velocity,respectively.Oneσis 5 4 86(blue),18(red),and16(low-velocity)mJybeam−1kms−1. on10′′–20′′angularscalesusingCS,HCO+,andHCNemission ingregion.Thejetismonopolarinthiscaseaswellandseemsto at even lower velocities(|V–V | ≤ 5 km s−1; Jørgensenet al. decelerate(see the channelmapsand the PV diagramsin Figs. LSR 2007,2009).Maret et al. (2009)observedbipolar H emission B.1andB.3).TheelongationofthejetisconsistentwiththePA 2 using the Spitzer telescope. Therefore, the present SiO image (∼105◦)oftheE-Woutflow,whichconsistsoftwohighlycolli- revealsforthefirsttimethefastjetsweepinguptheslowerout- matedlobesobservedquitefar(60′′–80′′)fromIRAS2A,using flow observedon largerscale. The jet kinematicalage, derived typical tracers (such as SiO, SO, SO , and CH OH) of shock 2 3 from the farthest SiO emission, is 88 years. Given that the jet chemistry (e.g.Bachiller et al. 1998;Wakelam et al. 2005).So maps suggest an inclination θ with respect to the plane of the far, the driving sourcesof the two perpendicularE-W and N-S sky≤45◦,thisestimatehastobeconsideredanupperlimit6.In outflows have not been revealed.The presentSiO (and contin- conclusion,giventhebipolarityof CO onlargescales, the N-S uum)imagesallowustoresolveforthefirsttimetheoriginofthe ejectionwassymmetricinthepast,whereasthepresentSiOim- IRAS2A quadrupolaroutflow,unveilinga Class 0 proto-binary agesuggeststhatinthelast∼90yearsonlythesouthernsidehas system(MM1andMM2)drivingtwodifferentjets. beenactive. Fourdistinctclumps(labelledA,B,C,andD),tofirst-order tracingasequenceofshocksalongthejet,areclearlyvisibleat 3.3.TheroleofSOemission:jetsandcavities differentvelocities and differentpositions along the bright SW bluelobe;theiroffsetswithrespecttoMM1are:(–0′.′01,+0′.′02), Atthehighestvelocities,theSOdistribution,astracedbyits(65– (–0′.′59,–1′.′13),(–0′.′86,–2′.′31),and(–1′.′35,–2′.′90),respectively. 54)line(Fig.1),resemblestheSiO(5–4)one,showingabrightS jetdrivenbyMM1,andsupportingtheassociationwiththeSiO ClumpA,emittingatthehighestvelocities,iscloselyassociated jet itself. Figure 3 plots as an examplethe SiO and SO spectra withMM1,confirmingthatSiOisapowerfultracerofthejetat observedtowardsclumpC,confirmingthattheyareverysimilar thebasein Class0 sources(e.g.Codellaetal. 2007).ClumpC (peakingat ∼ –25 km s−1) is instead associated with the MM3 atthehighestvelocities.Thesefindings(i)areinagreementwith thedetectionofSOatextremelyhighvelocities(|V–V |≥50 continuum source; MM3 could be a young stellar object driv- LSR ing the blueshifted SiO emission (between –10 and 0 km s−1, km s−1) using the IRAM 30 m antenna towardsthe L1448and IRAS04166+2706outflows(Tafallaetal.2010),and(ii)confirm as shown in Fig. 2; see also the channelmaps reported in Fig. whatwasfoundbyLeeetal.(2010)forHH211,i.e.thatSOcan B.1) which deviates from the N-S main axis, bending towards beusedasmolecularjettracerinadditiontothewell-knownH , the east. Alternatively,the continuumsource MM3 could trace 2 CO,andSiO(andH Omasers),bringinganewconstraintonjet dustemissionfromapre-existingclumpydenserregionwhich, 2 asasideeffect,bendspartoftheblueflow.Finally,thePVdia- chemicalmodels.Indeed,magnetohydrodynamic(MHD)mod- elsshowthattheSOabundance,quicklyformedbythereaction gramofFig.2suggestsajetdeceleration.Thedynamicaltimeof theSiOclumpsis≤27–88yr,andisconsistentwiththatderived of S with OH, can reach the observed abundance of 2 10−7 in jets(Tafallaetal.2010)throughambipolardiffusionheatingin fortheHH212SiOjet(25yr;Cabritetal.2007). C-shocks(PineauDesForeˆtsetal.1993)ormagneto-centrifugal InadditiontotheN-Sjet,theSiOmaprevealsaredshiftedjet (V–V upto∼+12kms−1;seeFig.B.1)withawidthsimilar diskwinds(Panoglouetal.2012). LSR totheN-Sjet(165AU)andspatiallyassociatedwiththeMM2 Close to the systemic velocity, the SiO intensity fades continuumsource,confirmingSiOasaprobeofthejetlaunch- whereasSO increases.Thisis particularlyclear whenwe com- paretheprofilesobservedtowardsclumpC(Fig.3)andthespa- 6 Theageshouldbecorrectedbyafactorofctg(θ). tial distributions in Fig. 1: low-velocity (|V–VLSR| ≤ 4 km s−1) 3 Codellaetal.:Monopolarjetsdrivenbyaproto-binarysysteminNGC1333-IRAS2A Fig.3. Comparison between the SiO(5–4) and SO(6 –5 ) lines 5 4 asobservedtowardsclumpC(inmain-beamtemperature,T , MB scale). SiOwithshockedmaterial.IfwemodeltheT ∼30Kofthe MB high-velocitySO(6 –5 )emissionobservedtowardsclumpCus- 5 4 ingRADEXcoupledwiththecollisionratesprovidedbyGreen Fig.2. Position-velocity cut of SiO(5–4) (grey scale and black (1994),wefindN ∼1016–1017cm−2andn ≥105cm−3,sup- contours)and SO(65–54) (magenta contours)along the N-S jet SO H2 (PA=25◦,seegreylineinFig.1).Firstcontoursandstepscor- porting,asforSiO,shocked(compressed)gas. respond to 5σ (3.0 K for SiO and 4.5 K for SO) and 10σ, re- spectively.DashedlinesmarkthepositionsofMM1,MM3,and 4. Conclusions theambientV (+6.5kms−1).LabelsA,B, C, andD arefor LSR thefourclumpsalongtheSiObluejet.NoSiOorSOemission Thepresentcontinuum,SiO,andSOdataallowustodisentan- isdetectedoutsidethegivenvelocityrange. gletheoriginoftheIRAS2Aquadrupolaroutflowintoaproto- binarysystempoweringtwodifferentjets.Werevealedaclumpy SjetemergingfromthebrightestMM1continuumsource,plus SObrightemissiontracesextendedemissionin boththenorth- aredshiftedEjetassociatedwiththeweakerMM2source.The ern and southern lobes (Fig. 2; see also the channel maps of jet gas has high-excitation conditions (≥ 100 K; ≥ 105 cm−3). Fig. B.2). In particular, Fig. 1 suggests the association of low- Thefast, young(≤ 90yr)Sjetopeneda molecularcavity,effi- velocity SO with a cavity with MM1 at the vertex. Emission cientlytracedbySOatvelocityclosetosystemic(|V–V |≤4 LSR of SO redshifted by ∼ 5 km s−1 is also detected towards north kms−1).TheIRAS2Ajetsareintrinsicallymonopolaronscales in addition to the SiO MM2 jet, but the morphology suggests <1000AUindicatingthatone-sideejectionsfromprotostarsare that this emission is still associated with a cavity rather than possibleduringshortperiods(≤90yr). the jet. In addition,an SO eastern clumpredshiftedby 2–3km s−1 appearsalongthedirectionofthe E-Wjet, andis plausibly Acknowledgements. We are very grateful to all the IRAM staff, whose ded- related to swept-up material. The low-velocitySiO emission is ication allowed us to carry out the CALYPSO project. The research leading totheseresultshasreceived fundingfromtheEuropeanCommunitysSeventh elongated,butitisdefinitelyweakerandoffsettotheNWwith FrameworkProgramme(FP7/2007-2013/)undergrantagreements No229517 respecttothebluejetaxis,andsupportsitsassociationwiththe (ESOCOFUND)andNo291294(ORISTARS),andfromtheFrenchAgence SO cavity.Theweaknessof SiO in the cavity shouldreflectits NationaledelaRecherche(ANR),underreferenceANR-12-JS05-0005. low formation rate in low-velocity shocks (e.g. Gusdorf et al. 2008ab). Interestingly, the H18O emission imaged at PdBI by 2 Persson et al. (2012) and distributed along the direction of the References blueshiftedoutflow,isemittinginthe+1,+9kms−1 range,sug- gestingthatH18O also tracesthe outflowcavities. In summary, Andre´Ph.,Ward-ThompsonD.,&BarsonyM.2000,Protostars 2 thelow-velocityemissiontracesacavityopenedbythefastjet, andPlanetsIV,59 aspredictedbyMHDdiskwindmodels(Cabritetal.1999). Bachiller R., Codella C., Colomer F., Liechti S., & Walmsley C.M.1998,A&A335,266 CabritS.,FerreiraJ.,&RagaA.C.2007,A&A343,L61 3.4.Highbrightnesstemperaturesandexcitationconditions CabritS.,CodellaC.,GuethF.,etal.2007,A&A468,L29 TheSiO(5–4)profilesrevealextremelyhighbrightnesstempera- CodellaC.,CabritS.,GuethF.,etal.2007,A&A462,L53 turesT ofupto90K.Thesevaluesarecomparedwiththere- DayouF.,&Balanc¸aC.2006,A&A459,297 MB sultoftheRADEX7non-LTEcode(vanderTaketal.2007)with Engargiola G., & Plambeck R.L. 1999, The Physiscs and the rate coefficients for collisions with H (Dayou & Balanc¸a ChemistryoftheInterstellarMedium,Verlag,291 2 2006)usinga planeparallelgeometry,andassuminga FWHM Evans N.J., Dunham M.M., Jørgensen J.K., et al. 2009, ApJS linewidth of 20 km s−1. One line is obviously not enough for 181,321 a properanalysis;nevertheless,ifwe assumeT ≤500K, the Ferna´ndez-Lo´pez M., Girart J.M., Curiel S., et al. 2013, ApJ kin high T values constrain the total SiO column densities N 778,72 MB SiO ≥ 1015 cm−2. Interestingly, the highest T suggests high ex- GreenS.1994,ApJ434,188 MB citation conditions with T ≥ 100 K and n ≥ 105 cm−3, in GuilletV.,JonesA.P.,&PineauDesForeˆtsG.2010,A&A497, kin H2 agreementwith the estimates found for SiO clumps associated 145 with other protostellaroutflows(e.g. Hiranoet al. 2006;Nisini Gusdorf A., Cabrit S., Flower D.R., & Pineau Des Foreˆts G. et al. 2007; Cabrit et al. 2007), confirming the association of 2008a,A&A482,809 Gusdorf A., Pineau Des Foreˆts G., Cabrit S., & Flower D.R. 7 http://home.strw.leidenuniv.nl/∼moldata/radex.html 2008b,A&A490,695 4 Codellaetal.:Monopolarjetsdrivenbyaproto-binarysysteminNGC1333-IRAS2A HiranoN.,LiuS.-Y.,HoP.P.T.,etal.2006,ApJ636,L141 HiranoN.,HoP.P.T.,LiuS.-Y.,etal.2010,ApJ717,58 HirotaT.,BushimataT.,ChoiY.K.,etal.2008,PASJ60,37 Jørgensen J.K., Hogerheijde M.R., van Dishoeck E.F., Blake G.A.,&Scho¨ierF.L.2004a,A&A413,993 JørgensenJ.K., HogerheijdeM.R., & Blake G.A. 2004b,A&A 415,1021 JørgensenJ.K., Bourke T.L., MyersP.C., et al. 2007,ApJ 659, 479 JørgensenJ.K.,vanDishoeckE.F.,VisserR.,etal.2009,A&A 507,861 KneeL.B.G.,&SandellG.2000,A&A361,671 LeeC.-F.,HoP.T.P.,HiranoN.,etal.2007,ApJ659,L499 LeeC.-F.,HoP.T.P.,BourkeT.L.,etal.2008,ApJ685,L1026 LeeC.-F.,HiranoN.,PalauA.,etal.2009,ApJ699,L1584 LeeC.-F.,HasegawaT.I.,HiranoN.,etal.2010,ApJ713,L731 LooneyL.W.,MundyL.G.,&WelchW.J2000,ApJ529,L477 Maret S., Bergin E.A., Neufeld D.A., et al. 2009, A&A 698, 1244 MauryA.J.,Andre´Ph.,Hennebelle,P.,etal.2010A&A512,40 Maury A.J., Andre´ Ph., Men’shchikov A., Ko¨nyves V., & BontempsS.2011,A&A535,77 NisiniB.,CodellaC.,GianniniT.,etal.2007A&A462,163 PanoglouD.,CabritS.,PineauDesForeˆtsG.,etal.2012,A&A 538,A2 PerssonM.V,JørgensenJ.K.,&vanDishoeckE.F.2012,A&A 541,A39 Pety J., Gueth F., Guilloteau S., & DutreyA. 1996,A&A 458, 841 Pickett H.M., Poynter R.L., Cohen E.A., et al. 1998, J. Quant. Spectrosc.&Rad.Transfer60,883 PineaudesForeˆtsG.,RoueffE.,ShilkeP.,&FlowerD.R.1993, MNRAS262,915 PlunkettA.L.,ArceH.G.,CorderS.A.,etal.2013,ApJ774,22 Reipurth B., Rodr´ıguez L., Anglada G., & Bally J. 2002, AJ 124,1045 SandellG.,&KneeL.B.G.2001,ApJ546,L49 Tafalla M., Santiago-Garc´ıa J., Tafalla M., Johnstone D., & BachillerR.2009,A&A465,169 Tafalla M., Santiago-Garc´ıaJ., Hacar A., & Bachiller R. 2010, A&A522,91 van der Tak F.F.S., Black J.H., Schøier F.L., et al. 2007, A&A 468,627 vanDishoeckE.F.,&BlakeG.A.,1998,ARA&A36,317 Wakelam, V., Ceccarelli C., Castets A., et al. 2005, A&A 437, 149 5 Codellaetal.:Monopolarjetsdrivenbyaproto-binarysysteminNGC1333-IRAS2A Fig.A.1. Contour plots of the IRAS2A continuum emission at 3.2mm.TheellipseshowsthePdBIsynthesisedbeam(HPBW): 1′.′42×1′.′00(PA=38◦).Firstcontoursandstepscorrespondto 5σ (1.3 mJy beam −1). Labels indicate the main source MM1 Fig.B.3.Position-velocitycutofSiO(5–4)(greyscaleandblack and the weaker source MM2. The black triangle stands for the contours)andSO(65–54)(magentacontours)alongthewholeE- position of MM3, revealed at 1.4 mm and not detected at 3.2 Wjet(PA=105◦,seethegreylineinFig.1).Firstcontoursand mm. steps correspond to 5σ (2.5 K for SiO and 4.0 K for SO) and 3σ, respectively.Dashed lines mark the positionsof MM2 and the protostellar envelopeV (+6.5 km s−1). We note that the LSR AppendixA: The3.2mmcontinuumemission SiOandSOemissionatnegativeangularoffsetstracestheN-S outflowdrivenbyMM1(seeFig.1). Figure A.1 shows the emission map of the 3.2 mm continuum dust emission, which was produced as the 1.4 mm map using robustweighting,andrestoredwithacleanbeamof1′.′42×1′.′00 (PA=38◦).The3.2mmemissionallowsustodetecttheMM1 (α(J2000):03h28m55s.56,δ(J2000):+31◦14′36′.′93)andMM2 (α(J2000): 03h 28m 55s.69, δ(J2000): +31◦ 14′ 35′.′63) sources, consistentwithwhatwasfoundinthe1.4mmimage(seeTable 1 and Fig. 1). The peak fluxes are 17 mJy beam−1 and 2 mJy beam−1 for MM1 and MM2, respectively. On the other hand, MM3 (revealed at 1.4 mm) is not detected at a 3σ sensitivity levelof0.75mJybeam−1. AppendixB: SiOandSOchannelmaps We showin Figs. A.1 andA.2the channelmapsof theSiO(5– 4) and SO(6 –5 ) blue- and redshifted (continuum subtracted) 5 4 emissions towards IRAS2A. The images trace the clumpswell atdifferentvelocitiesalongtheN-SjetdrivenbyMM1andalso tracetheredshiftedElobeassociatedwithMM2.Thegreylines showthedecelerationofthehighestvelocityclumps. Figure A.3 shows the SiO and SO PV diagrams along the E-W jet axis: as in the N-S case, the SiO emitting at the high- estvelocitiesiscloselyassociatedwiththedrivingsourceMM2, confirmingthatSiOisapowerfultracerofthejetlaunchingre- gion. 6 Codellaetal.:Monopolarjetsdrivenbyaproto-binarysysteminNGC1333-IRAS2A Fig.B.1.ChannelmapsoftheSiO(5–4)blue-andredshifted(continuumsubtracted)emissionstowardsIRAS2A.Eachpanelshows theemissionintegratedoveravelocityintervalof2.5kms−1centredatthevaluegivenintheupper-rightcorner.Thethickboxand themagentacontoursindicatetherangeassociatedwiththesystemicvelocity.Thickcontourscorrespondtothe5σemissionofthe 1.4mmcontinuummapshowninFig.1andindicatethepositionoftheMM1,MM2,andMM3continuumsources.Theellipsein thetop-leftpanelshowsthePdBIsynthesisedbeam(HPBW):0′.′81×0′.′69(PA=33◦).Firstcontoursandstepscorrespondto5σ (15mJybeam−1kms−1)and10σ,respectively.GreylinesindicatetheslowingdownofthehighestvelocitySiOclumps(seetext). Fig.B.2. Channels map of the SO(6 –5 ) blue- and redshifted (continuum subtracted) emissions towards IRAS2A. Each panel 5 4 showstheemissionintegratedoveravelocityintervalof2.7kms−1 centredatthevaluegivenintheupper-rightcorner.Symbols aredrawnasinFig.2.Theellipseinthetop-leftpanelshowsthePdBIsynthesisedbeam(HPBW):0′.′81×0′.′69(PA=33◦).First contoursandstepscorrespondto5σ(15mJybeam−1 kms−1)and10σ,respectively.Greylinesindicatetheslowingdownofthe highestvelocitySOclump(seetext). 7