ebook img

First results from the CALYPSO IRAM-PdBI survey. II. Resolving the hot corino in the Class 0 protostar NGC 1333-IRAS2A PDF

1.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview First results from the CALYPSO IRAM-PdBI survey. II. Resolving the hot corino in the Class 0 protostar NGC 1333-IRAS2A

Astronomy&Astrophysicsmanuscriptno.ms (cid:13)cESO2014 January28,2014 LettertotheEditor ⋆ First results from the CALYPSO IRAM-PdBI survey II. Resolving the hot corino in the Class 0 protostar NGC 1333-IRAS2A A.J.Maury1,2,4,A.Belloche3,Ph. André4,S.Maret5,F.Gueth6,C.Codella7,S.Cabrit8,5,L.Testi2,7,9,andS. Bontemps10,11 1 Harvard-SmithsonianCenterforAstrophysics,60Gardenstreet,Cambridge,MA02138,USA 2 ESO,KarlSchwarzschildStrasse2,85748GarchingbeiMünchen,Germany 4 3 Max-Planck-InstitutfürRadioastronomie,AufdemHügel69,53121Bonn,Germany 1 4 LaboratoireAIM-Paris-Saclay,CEA/DSM/Irfu-CNRS-UniversitéParisDiderot,CE-Saclay,F-91191Gif-sur-Yvette,France 0 5 UJF-Grenoble1/CNRS-INSU,InstitutdePlanétologieetd’AstrophysiquedeGrenoble,UMR5274,Grenoble38041,France 2 6 IRAM,300ruedelaPiscine,38406StMartind’Hères,France n 7 INAF-OsservatorioAstrofisicodiArcetri,LargoE.Fermi5,I-50125Firenze,Italy a 8 LERMA,CNRSUMR8112,ObservatoiredeParis,ENS,UPMC,UCP,PSL,F-75014Paris J 9 ExcellenceClusterUniverse,Boltzmannstr.2,D-85748,Garching,Germany 10 UniversitédeBordeaux,LAB,UMR5804,F-33270Floirac,France 7 11 CNRS,LAB,UMR5804,F-33270Floirac,France 2 ReceivedNov.12,2013/AcceptedJan.22,2014 ] A G ABSTRACT . h Aims. We investigate the origin of complex organic molecules (COMs) in the gas phase around the low-mass Class 0 protostar p NGC1333-IRAS2A,todetermineiftheCOMemissionlinestraceanembeddeddisk,shocksfromtheprotostellarjet,orthewarm - innerpartsoftheprotostellarenvelope. o Methods.IntheframeworkoftheCALYPSO⋆⋆IRAMPlateaudeBuresurvey,weobtainedlargebandwidthspectraatsub-arcsecond r resolution towards NGC 1333-IRAS2A. Weidentify theemission lines towards thecentral protostar and perform Gaussian fitsto t s constrainthesizeoftheemittingregionforeachoftheselines,tracingvariousphysicalconditionsandscales. a Results. The emission of numerous COMs such as methanol, ethylene glycol, and methyl formate is spatially resolved by our [ observations. Thisallowsustomeasure, forthefirsttime, thesizeof theCOMemissioninsidetheprotostellar envelope, finding thatitoriginatesfromaregionofradius40–100 AU,centeredontheNGC1333-IRAS2A protostellarobject. Ouranalysisshows 1 nopreferentialelongationoftheCOMemissionalongthejetaxis,andthereforedoesnotsupportthehypothesisthatCOMemission v arisesfromshockedenvelopematerialatthebaseofthejet. Downtosimilarsizes,thedustcontinuumemissioniswellreproduced 8 withasingle power-law envelope model, and thereforedoes not favor the hypothesis that COMemission arisesfrom thethermal 9 sublimationofgrainsembeddedinacircumstellardisk. Finally,thetypicalscale∼60AUobservedforCOMemissionisconsistent 9 withthesizeoftheinnerenvelopewhereT >100Kisexpected.OurdatathereforestronglysuggestthattheCOMemissiontraces 6 dust thehotcorinoinIRAS2A,i.e., thewarminner envelopematerial wheretheicymantlesofdust grainsevaporate because theyare . 1 passivelyheatedbythecentralprotostellarobject. 0 4 Keywords. Stars:formation,circumstellarmatter–Complexmolecules–Interferometry–Individualobjects:NGC1333-IRAS2A 1 : v i1. COMemissioninClass0protostars (∼< 50–200AU)whereprotostellardisks(progenitorsofthepro- X toplanetarydisksobservedatlaterstages)areassembledduring rAlong the path leading to the formationof solar-typestars, the theembeddedphases,mostenvelopetracers(e.g.,12CO,N2H+) aClass 0 phase is the main accretion phase during which most are optically thick or chemically destroyed, making it difficult of the final stellar mass is accreted onto the central protostel- toprobethephysicalpropertiesoftheinnerenvelopeonscales lar object (Andréetal. 2000). It is therefore of paramountim- whereaccretionactuallyproceeds. portance to study the properties of the infalling envelope ma- The origin of complex organic molecule (COM) emission terial on all scales during the Class 0 phase. Ultimately, this in low-mass Class 0 protostars is still debated (Bottinellietal. willallowustoconstraintheefficiencyoftheaccretion/ejection 2007). First, it has been suggested that the emission of COMs process to build solar-type stars and to shed light on the initial comesfromhotcorinoregionsdeeplyembeddedinClass0pro- conditions for the formation of protoplanetary disks and plan- tostars, analogousto the hotcoresobservedtowardshigh-mass ets around stars like our own. However, on the small scales protostars (e.g., vanDishoeck&Blake 1998; Ceccarelli 2004; Bottinellietal. 2004a). In its early stages, the central proto- ⋆ BasedonobservationscarriedoutwiththeIRAMPlateaudeBure stellar object radiatively heats the surrounding inner envelope. Interferometer. IRAM is supported by INSU/CNRS (France), MPG When the temperature of the envelope material becomes high (Germany),andIGN(Spain). ⋆⋆ CALYPSOistheContinuumAndLinesinYoungProtoStellarOb- enough(∼100K),theicymantlesofdustgrainsevaporate,lead- jectssurvey. ingtohighgas-phaseabundancesofcomplexorganicmolecules Articlenumber,page1of10 that are formed on dust grains (Cazauxetal. 2003; Ceccarelli usedinouranalysisofthespatialdistributionoftheCOMemis- 2007; Garrodetal. 2008). Because of the low luminosities sionpresentedinSect. 3becausetheirspatialresolutionislower of the central protostars, the region where these molecules thanthespectraanalyzedhere(setupS2).Thesedatasetswillbe are released is expected to be small (typically ∼< 200 AU in describedinaforthcomingpaperthatanalyzesthechemistryin diameter;Bottinellietal. 2004b). If the COM emission indeed theIRAS2Aenvelope. tracesthewarminnerenvelopeheatedbythecentralprotostellar object, COM lines couldbegoodcandidatesto study the infall 3. Lineidentification andaccretionofcircumstellarmaterialdowntotheveryvicinity of the protostellar object itself. However, it has also been pro- We extracted the WideX spectrum at the continuum emission posedthatCOMemissioncouldoriginatefromthewarmsurface peak (α = 03h28m55.575s, δ = 31◦14′37.05′′). The J2000 J2000 ofembeddeddisks(Jørgensenetal.2005b),orshockedmaterial spectrum,presentedinFig.A.1,showsawealthofemissionlines alongprotostellarjets,sincespeciessuchasCH3OHareknown whose properties are analyzed in the following. The method to be greatly enhanced in shocks (Bachiller&PerezGutierrez used to identify the detected lines is described in Appendix A. 1997; Chandleretal. 2005) as a result of grain mantle sputter- Wereportthefirsttentativedetectionofthevibrationallyexcited ing. state3 =1ofHNCOinalow-massprotostar(2linesdetectedin 5 TheCALYPSOsurvey1,carriedoutwiththeIRAMPlateau setupS2,seeTable1). Thesmallnumberofdetectedlinespre- deBure(PdBI)interferometer,isprovidinguswithdetailed,ex- ventsusfromclaimingafirmdetection,buttheseidentifications tensive observations of 17 Class 0 protostars between 92GHz are very plausible since the intensities of the lines are consis- and232GHz. Oneofthemaingoalsofthisambitiousobserving tent with the model that fits the vibrational ground state emis- programistounderstandhowthecircumstellarenvelopeisbeing sion of HNCO. Moreover, our data providesthe first interfero- accreted onto the central protostellar object during the Class 0 metricdetection,in a Class 0 protostar,of deuteratedmethanol phase. Here,weshowthatourbroadbandCALYPSOobserva- (CH DOH: 4 lines detected in setup S2 and 14 lines detected 2 tionsoftheClass0protostarNGC1333-IRAS2A(d ∼ 235pc; insetupsS1/S3),ethyleneglycol(aGg′-(CH OH) : 5linesde- 2 2 Hirotaetal.2008)providedirectimagingofnumerousemission tectedinsetupS2and11linesdetectedinsetupsS1/S3),anda lines,spatiallyresolvingtheCOMemissionstructureandthere- tentativedetectionforformamide(NH CHO:1lineinsetupS1 2 foreputtingstrongconstraintsonitsorigin. and1lineinsetupS2). 2. Observationsanddatareduction 4. Modelingofthevisibilities The Class 0 protostar NGC 1333-IRAS2A(hereafter IRAS2A, The PdBI 1.4 mm dust continuum emission map is shown as seealsoJenningsetal.1987;Looneyetal.2000)wasobserved contoursin Fig.1(a). The present analysis only focuses on the withtheIRAM-PdBI,at218.5GHz,usingtheWideXbackends emission associated with IRAS2A (MM1); the two secondary to coverthe full 3.8GHz spectralwindowat low spectralreso- continuumsourcesseenat[1′.′53,−1′.′49](MM2,15mJy/beam) lution. Higher resolutionbackendswere placed ontoa handful and [−0′.′92,−2′.′21] (MM3, 21 mJy/beam) were fitted as com- of molecularemission lines: two letters presentthe analysis of pactsourcesandremovedfromthecontinuumvisibilitytable. thesedata,usedtoexplorethekinematicsintheinnerenvelope Theresultingrealpartofthecontinuumvisibilityofthecen- (with methanol lines, Maret et al.) and the jet properties from tralsourceisplottedinFig.1(b)asafunctionofuvradius. The molecularlineemission(withSOandSiOlines,Codellaetal.). flux on baselines ∼ 200kλ is only half that predicted by inter- A-array observations were obtained during two observing ses- polationof previousdata on the same baselinesat90 GHz and sions,respectivelyinJanuaryandFebruary2011,whileC-array 345GHz (Looneyetal. 2003; Jørgensenetal. 2005a); this dif- observationswerecarriedoutinDecember2010. Thebaselines ferencecouldbeduetosecondarysourcesoffsetfromthephase sampledin ourobservationsrangefrom19m to 762m, allow- center, which were not removed (or well resolved) in earlier ing us to recoveremission on scales from ∼ 8′′ down to 0′.′35. studiesandintroducedapositivebiasinthevisibilityamplitudes Calibrationwascarriedoutfollowingstandardprocedures,using usedbytheseauthors. Figure1(b)alsorevealsthattherealpart CLICwhichispartoftheGILDAS2software.ForbothAtracks, of the continuum visibility of the central IRAS2A source ex- phasewas stable (rms<50◦) andpwvwas 0.5–1mmwith sys- hibits a smooth decline all the way out to our longest baseline temtemperatures∼100-160K,leadingtolessthan30%flagging of ≃ 550kλ, with no sign of residual positive flux on resolved in the dataset. For the C track, phase rms was <80◦, pwv was scales. We therefore performed a simple power-law fit to the 1–2mm,andsystemtemperatureswere∼150-250K,leadingto continuumvisibilities of the centralsource, shown in Fig.1(b). lessthan10%flaggingintheresultinguv-table. IntheRayleigh-Jeansapproximationandforoptically-thindust emission, if the temperature and density in the envelope fol- Wemergedthedatasetstocreatethefinalvisibilitytablefor low simple radial power laws ρ ∝ r−p and T ∝ r−q, the emer- the spectra towards IRAS2A. The continuum was built by us- gentdustcontinuumemissionalsohasasimplepower-lawform ingtheline-freechannels,thencontinuumvisibilitiesweresub- I(r) ∝ r−(p+q−1). Forinterferometricobservations,thevisibility tracted fromthe datasetto create a purespectralcubecovering distributionisV(b) ∝ b(p+q−3),solelydeterminedbythepower- frequenciesbetween216.85GHzand220.45GHzwithaspec- tralresolutionof3.9Mhz(∼2.7 kms−1). Usingnaturalweight- law indices of the temperature and density profiles in the en- ing,thesynthesizedFWHMbeamis∼ 0′.′8×0′.′7, withanrms velope. We find that a power-law functionV(b) ∝ b(−0.45±0.05), noiseof∼3mJy/beamintheline-freechannelsofthespectra. shownasagreenlineinFig.1(b),reproduceswellboththecon- tinuum emission visibility profile obtained from PdBI and the The line identification also used two additional CALYPSO single-dish flux (0.85 Jy; Motte&André 2001). The contin- PdBIdatasets, consistingofwidebandspectraaround231GHz uumemissiondowntor∼35AUcanthereforebereproducedby (setup S1) and 93 GHz (setup S3). These observationsare not aprotostellarenvelopemodelwithouttheneedforanadditional 1 Seehttp://irfu.cea.fr/Projets/Calypso/ large (200–300AU diameter) disk component, previously sug- 2 http://www.iram.fr/IRAMFR/GILDAS gested by Jørgensenetal. (2005a). The residuals map shown Articlenumber,page2of10 A.J.Mauryetal.:ResolvingthehotcorinointheClass0protostarNGC1333-IRAS2A Fig.1. (a)CH OCHOat216.966GHz(backgroundimage)andcontinuumaround219GHz(contours)emissionmapstowardsIRAS2A.The 3 rmsnoiselevelisσ=1.5mJy/beaminthecontinuum,andσ=2.8mJy/beamintheCH OCHOmap(emissionfromone2.7kms−1-channel). 3 Contoursarelevelsat3σ,5σ,8σandthenfrom10σto100σin10σincrement. Thesynthesizedbeamis0′.′8×0′.′68(P.A.32◦). Theredand blue arrows show the direction of the main bipolar jet axis (Jørgensenetal. 2007). (b) Continuum (real part of the visibilities, black points) andcorrespondingbest-fitpower-lawmodel(greendashedline)averagedoverbaselinebinsof10m,asafunctionofbaselinelength. Residuals areshownasaredline. Thezero-spacingfluxisextrapolatedfromthesingle-dishfluxat850µmbyMotte&André(2001). (c): Realpartof the visibilities (black points) from the CH OCHO (20 0 20 2 - 19 1 19 1) emission line and corresponding best-fit Gaussian model (FWHM 3 0′.′47×0′.′40,P.A41◦,greenline).Residualsareshownasaredline. inelectronicFig.1(a)indeedshowsthatonlytheasymmetryon tostar. However, Jørgensenetal. (2007) used the Submillime- the eastern side of the envelope was not fitted properly by our ter Array(SMA)to observethe IRAS4A protostarandshowed power-lawmodel. Wenotethatour(p+q)value(∼ 2.55)isin that CH OH and H CO emission is extended along the out- 3 2 agreementwiththeprotostellarenvelopeprofileofIRAS2Aon flow axis; and SMA observations of I16293 detected a wealth largerscales(p+q ∼ 2.6)proposedfromBIMA2.7mmobser- of COM emission lines (Bisschopetal. 2008; Jørgensenetal. vations(Looneyetal.2003). 2011),mostlyunresolved. Pinedaetal.(2012)andZapataetal. Table1liststhespatialextentoftheemissionofeachiden- (2013) used ALMA observationsofI16293to analyzethe spa- tifiedlinethatisdetectedwithamediumorhighsignal-to-noise tial and velocity distribution of 3 COM lines, and trace the in- ratiotowardsIRAS2A.Owingtoexcitationandabundancevari- fall on small scales aroundsource B. Observationsof IRAS2A ations, theline emission is unlikelyto followa power-lawpro- withanangularresolutionof∼2′′ detectedemissionlinesfrom filesimilartothedustcontinuumemission. Thereforewemod- five COMs, all spatially unresolved (Jørgensenetal. 2005a). eled the visibilities with elliptical Gaussians and point sources Perssonetal. (2012) and Kristensenetal. (2012) detected wa- to determinethe emittingsize ofeachof thesemolecularlines. ter emission in the IRAS2A envelope and outflow, both at the We note that most of the lines are not spectrally resolved: the systemicandblue-shiftedvelocities. fit was performed on the emission in the channel showing the Thankstothebandwidth,sensitivity,andresolutionofPdBI, greatestflux to avoid possible contaminationfrom neighboring emission from large samples of COMs can now be mapped in lines; in most cases this is the channelat the systemic velocity theveryinnerprotostellarenvelope:ouranalysisshowsthattens ofthecore. AnexampleofthismodelingisshowninFig.1(c). ofhighexcitation(Eup ∼> 100K)emissionlinesaredetectedand Thebestfitwaskeptwhenachi-squareminimizationconverged, spatiallyresolvedinourPdBIdata. Theyprobevariousphysical complementedbyavisualinspectionoftheresidualsmaps(see conditions(excitationtemperaturesrangefrom∼30Kto250K electronicFig.1(b)foranexample)toensurethatnosignificant for CH OH and HNCO) and a wide range of upper-level en- 3 emissionwasleftaroundtheIRAS2Asource.Theparametersof ergies, therefore allowing us to spatially resolve the hotcorino thebest-fitmodelforeachidentifiedmolecularlinearegivenin emissioninIRAS2A,forthefirsttime.Theemittingsizesofthe Table2. Forthelineswhoseemissionmorphologyisdominated molecules detected towards IRAS2A are shown in Fig.2. All byoutflow-orjet-likestructures(SiOandSOmainly),nosatis- COMs are observed in the inner envelope at radii ∼< 100AU. factoryfitoftheircomplexspatialdistributionswasfoundwith The best fit reproducingthe dependencyof emitting sizes with ellipticalGaussianmodels,andvaluesarenotreported. upper-levelenergiesofthemoleculartransitionsisapowerlaw FWHM ∝ E−0.25±0.05. However,theexactslopeofthiscorrela- up tionisnotverytightlyconstrainedbecauseofthelimitednum- 5. Discussion: originoftheCOMemission berofhighsignal-to-noiselines,andafitwithaconstantradius of 55 AU yields a only marginally higher χ2. The exact de- ItisstillbeingdebatedwhetherCOMemissionlinesobservedin pendenceoftheemittingregionradiuswith E willhavetobe low-massClass0protostarsaretracingembeddeddisks,shocks up exploredwithmoreCOMlinesdetectedwithahighersignal-to- from protostellar jets, or the warm inner parts of protostellar noise ratio. However, we note that the highest excitation lines envelopes. Bottinellietal. (2004a) observedthe Class 0 proto- that we spatially resolve are all located inside a region of ra- star IRAS16293 (I16293 in the following) with the PdBI and dius r ∼40 AU (average FWHM∼ 0.34′′ for transitions with found that the emission of CH CN and CH OCHO was unre- 3 3 300K< E <800K). solved on 180AU scales, while observationsof the NGC1333- up IRAS4AprotostarshowedthattheCH CNemissioncomesfrom Modeling the PdBI continuum data, we find that the dust 3 aregion∼175AU(FWHM)indiameter(Bottinellietal.2008). continuum emission is well described by a protostellar enve- These observations also showed that emission from CH CN lope with a single power-law profile I(r) ∝ r−1.55 (see Sect.3 3 and CH OCHO is not detected on large scales along the out- andFig.1b),downtophysicalsizes(r ∼ 35AU)probedbyour 3 flow axis but only on small scales around the embedded pro- longestbaselines.Thissuggeststhat,onscaleswheretheCOMs Articlenumber,page3of10 fore it is very unlikely that these molecules are formed from non-thermaldesorptionmechanismsdue to the interaction of a collimatedhigh-velocityjetwith the surroundingenvelopema- terial,assuggestedbyÖbergetal.(2011). Insteadthekinemat- ical and spatial distribution information from our data draw a picturewheretheCOMemissionoriginatesfromwarmmaterial surroundingtheprotostaranddynamicallyassociatedtothepro- tostellar envelope: the so-called hot corino region. This opens uptheperspectiveofusingcomplexmoleculesastracersofthe innerenvelopekinematics, downto the ∼< 100AU sizes where rotationally-supported protostellar disks may form, and accre- tionproceedsontheprotostaritself. Inarelatedpaper,wemake useofthehighspectralresolutionobservationsoftwomethanol emissionlinestoassesstheirkinematicalproperties(Maretetal. 2014). To conclude, our results strongly support a scenario where the COM emission in IRAS2A originates from a hot corino, Fig.2. Emissionsize(averageradiusofthebest-fitellipticalGaussian) i.e., the release of complex molecules in the gas phase of the ofthemolecularlineslistedinTable2asafunctionoftheirupper-level inner(∼< 100AU) envelope,whena criticaltemperatureallow- energy.Onlythespatiallyresolved,unblendedlinesforwhichagoodfit ing sublimation of icy grain mantles is reached, and not from couldbeachievedarerepresented. Blacksymbolsshowthemolecules shocks at the base of the jet. Analysis of the CALYPSO ob- forwhichonlyoneemissionlineisobserved and/or resolvedinsetup servationstowardtheremaining16Class0 objectsin oursam- S2,whilecoloredsymbolsshowmoleculesforwhichseverallinesare plewillenhancethestatistics ontheoccurrenceofCOM emis- detected andresolved. Theerror barsarethelargest error bar (minor sionin Class 0 protostars, anddetermineif theyalways trace a or major axis) produced by the fit with an elliptical Gaussian model. Thepinklineshowsthebestpower-lawfittothedata,asdescribedin hot corino in the warm inner envelopeof these objects. If this the text. All COM lines that are resolved emit in a region of radius is the case, the analysis of spectral emission lines from com- ∼< 100AU. plexmoleculeswillbeapowerfultoolfortracingtheprotostel- larkinematicsduringthediskformationepoch,onscaleswhere protoplanetarydisksareobservedatlater(e.g.,T-Tauri)stages. emit, the dust emission is still predominantlyassociated to the Acknowledgements. WethankHolgerMüllerforthespectroscopicpredictions envelopeandnottoaprotostellardisk.SincemostCOMsarere- ofHNCO,35=1. WeareverythankfultotheIRAMstaff,whosededicational- leasedfromdustgrains,itsuggeststhattheCOMsarereleased lowedustocarryouttheCALYPSOproject.Thisresearchhasreceivedfunding in the warm inner envelope around the central protostellar ob- fromtheEuropeanCommunity’sSeventhFrameworkProgramme(/FP7/2007- ject. Moreover,theobservedsizeofr 40-100AUfortheCOM 2013/) under grant agreements No 229517 (ESO COFUND) and No 291294 (ORISTARS).S.M.acknowledgesthesupportoftheFrenchAgenceNationale emissioninIRAS2Aisingoodagreementwithpredictionsfrom delaRecherche(ANR),underreferenceANR-12-JS05-0005. simple analytical models computing the size of the hot corino regionatT ∼> 100K:ifweassumeadensityprofileρ∝r−1.5for theenvelope,andwith(p+q−1)=1.55(seeSect.3),theradius atwhichdustintheenvelopereachesatemperatureof100Kis References r ∼ 60 ± 5 AU ( 40 ± 3 AU with ρ ∝ r−2, see Eq. 2 in 100K André,P.,Ward-Thompson,D.,&Barsony,M.2000,ProtostarsandPlanetsIV, Motte&André 2001). We note, however, that the presence of 59 anunresolvedr<40AUdiskinIRAS2Aisnotexcludedbyour Bachiller,R.&PerezGutierrez,M.1997,ApJ,487,L93+ observations,andcouldcontributetotheemissionofCOMson Belloche,A.,Müller,H.S.P.,Menten,K.M.,Schilke,P.,&Comito,C.2013, A&A,559,A47+ thesmaller,unresolvedscales. Bisschop,S.E.,Jørgensen,J.K.,Bourke,T.L.,Bottinelli,S.,&vanDishoeck, The emission of the least complex molecules (e.g., H CO, E.F.2008,A&A,488,959 2 DCN, OCS)tendstobeelongatedalongpositionangles ∼< 30◦ Bottinelli,S.,Ceccarelli,C.,Lefloch,B.,etal.2004a,ApJ,615,354 Bottinelli, S.,Ceccarelli, C.,Neri,R.,&Williams,J.P.2008,inIAUSympo- of the protostellar jet P.A - traced by SiO emission (see sium,Vol.251,IAUSymposium,ed.S.Kwok&S.Sanford,117–118 Codellaetal. 2014). This emission cannot be due to sputter- Bottinelli,S.,Ceccarelli,C.,Neri,R.,etal.2004b,ApJ,617,L69 inginshockssincetheobservedvelocitiesareveryclosetothe Bottinelli,S.,Ceccarelli,C.,Williams,J.P.,&Lefloch,B.2007,A&A,463,601 systemic velocity of the core. Therefore, these emission lines Cazaux,S.,Tielens,A.G.G.M.,Ceccarelli,C.,etal.2003,ApJ,593,L51 Ceccarelli, C.2004,inAstronomicalSocietyofthePacificConferenceSeries, aremostprobablyduetothermalorphotodesorptionintheUV- Vol.323,StarFormationintheInterstellarMedium:InHonorofDavidHol- heatedcavitywalls(Visseretal.2012): thismightillustratethe lenbach, ed.D.Johnstone, F.C.Adams, D.N.C.Lin, D.A.Neufeeld, & contribution of the irradiated outflow walls, e.g., the warm en- E.C.Ostriker,195 velope material with non-sphericalgeometry at T > 100K, Ceccarelli,C.2007,inMoleculesinSpaceandLaboratory dust Chandler,C.J.,Brogan,C.L.,Shirley,Y.L.,&Loinard,L.2005,ApJ,632,371 to the hotcorino emission. However, we stress that the spatial Codella,C.,Maury,A.,Gueth,F.,etal.2014,A&Ainpress distribution of the COM emission at high Eup does not show a Garrod,R.T.,Weaver,S.L.W.,&Herbst,E.2008,ApJ,682,283 preferential elongation along the outflow/jet axis : the median Hirota,T.,Bushimata,T.,Choi,Y.K.,&al.2008,PASJ,60,37 aspectratioofthebest-fitellipticalGaussianmodelsis∼1.7,but Jennings,R.E.,Cameron,D.H.M.,Cudlip,W.,&Hirst,C.J.1987,MNRAS, thepositionanglesareverywidelydistributedfrom−80◦to85◦ 226,461 Jørgensen,J.K.,Bourke,T.L.,Myers,P.C.,etal.2007,ApJ,659,479 (seeTable2). Jørgensen,J.K.,Bourke,T.L.,Myers,P.C.,etal.2005a,ApJ,632,973 ThespectralresolutionoftheWideXdatapreventsusfrom Jørgensen,J.K.,Bourke,T.L.,NguyenLuong,Q.,&Takakuwa,S.2011,A&A, carryingoutanykinematicstudyofthoselines. However,these 534,A100 Jørgensen,J.K.,Schöier,F.L.,&vanDishoeck,E.F.2005b,A&A,437,501 COM emission lines are detected at velocitiesclose to the sys- Kristensen,L.E.,vanDishoeck,E.F.,Bergin,E.A.,etal.2012,A&A,542,A8 temicvelocityoftheprotostar(±1.4km/s,seeTable2). There- Looney,L.,Mundy,L.,&Welch,W.2000,ApJ,529,477 Articlenumber,page4of10 A.J.Mauryetal.:ResolvingthehotcorinointheClass0protostarNGC1333-IRAS2A Looney,L.,Mundy,L.,&Welch,W.2003,ApJ,592,255 Maret,S.,Belloche,A.,Maury,A.,etal.2014,A&Ainpress Motte,F.&André,P.2001,A&A,365,440 Müller,H.S.P.,Schlöder, F.,Stutzki, J.,&Winnewisser, G.2005,Journalof MolecularStructure,742,215 Öberg,K.I.,vanderMarel,N.,Kristensen,L.E.,&vanDishoeck,E.F.2011, ApJ,740,14 Persson,M.V.,Jørgensen,J.K.,&vanDishoeck,E.F.2012,A&A,541,A39 Pickett, H.M., Poynter, R.L.,Cohen, E.A.,etal.1998, J.Quant.Spec.Ra- diat.Transf.,60,883 Pineda,J.E.,Maury,A.J.,Fuller,G.A.,etal.2012,A&A,544,L7 vanDishoeck,E.&Blake,G.1998,ARA&A,36,317 Visser,R.,Kristensen,L.E.,Bruderer,S.,etal.2012,A&A,537,A55 Zapata,L.A.,Loinard,L.,Rodríguez,L.F.,etal.2013,ApJ,764,L14 AppendixA: Lineidentification We extracted the WideX spectrum at the continuum emission peak (α = 03h28m55.575s, δ = 31◦14′37.05′′) shown J2000 J2000 in Fig.A.1. The line identification was performed with the XCLASS software3 under the assumption of local thermody- namicequilibrium. Ourspectroscopicdatabasecontainsallen- tries of the CDMS (Mülleretal. 2005) and JPL (Pickettetal. 1998)catalogs,aswellasafewprivateentries(formoredetails, seeBellocheetal.2013). Thespectraweremodeledspeciesby species. For most species, an excitation temperature of 100K wasassumedfortheLTEmodeling,whileforafewspeciesthe detectionofseveraltransitionswithsignificantlydifferentupper- levelenergiesallowedus to leave the temperatureas a free pa- rameterofourmodeling(findingtemperaturesupto∼250Kfor CH OH and HNCO, for example). For each species, the spec- 3 tra in all three frequency setups were modeled at once, using five parameters: source size, temperature, column density, line width, and velocity offset with respectto the systemic velocity of the source. The emission of all transitions was assumed to come from a source of size 0′.′6 (average FWHM, see Sect.3). The fit optimization was performed by eye. For a few species (SO,SiO,CO),itwasnecessarytoincludeseveralvelocitycom- ponentstoaccountfortheshapeofthedetectedlines. Atotalof 86emissionlineswithpeaksignal-to-noiseratioshigherthan3 weredetectedatthepositionofthecontinuumemissionpeak,in setupS2,amongwhich55areidentified,seeTable1. 3 Seehttp://www.astro.uni-koeln.de/projects/schilke/XCLASS. Articlenumber,page5of10 Fig.A.1. Continuum-subtractedWideXspectrumaround218.5GHz(setupS2),atthepositionofthemaximumof1.4mmcontinuumemission towardsIRAS2A(showninFig.1a). Articlenumber,page6of10 A&A–ms,OnlineMaterialp7 Table1.Listofemissionlinesdetectedatthepeakofthedustcontinuumemissionat219GHztowardsIRAS2A Frequencya S/Nb Identificationc Quantumnumbers (MHz) 216879 low ? 216947 high CH OH 5140-4220 3 +? 216966 high CH OCHO 200202-191191 3 200200-191190 201201-191191 201200-191190 200202-190192 200200-190190 201201-190192 201200-190190 217045 high ? 217108 high SiO 50-40 217118 high SiO 50-40 217123 high SiO 50-40 217133 high SiO 50-40 +aGg′-(CH OH) 214170-204161 2 2 217192 high CH OCH 224193-223203 3 3 224195-223205 224191-223201 224190-223200 217238 high DCN 3-2 217263 low ? 217300 high CH OH,3 =1 615-1-726-1 3 t 217359 medium CH DOH 174142-165121 2 217400 high ? 217450 high CH DOH 181172-182170 2 +aGg′-(CH OH) 241240-231231 2 2 240240-230231 217492 high ? 217588 low aGg′-(CH OH) 212191-202180 2 2 217643 high CH OH,3 =1 15610-1-16511-1 3 t 15691-165121 217804 low ? 217887 high CH OH 201190-200200 3 218022 low ? 218067 high ? 218127 high ? 218156 high ? 218181 high ? 218199 medium ? 218222 high H CO 303-202 2 218281 high CH OCHO 173142-163132 3 218298 high CH OCHO 173140-163130 3 218317 high CH DOH 5241-5151 2 218325 high HC N 24-23 3 218389 high ? 218441 high CH OH 4220-3120 3 218459 high NH CHO 1019-918 2 218469 low ? +aGg′-(CH OH) 221480-211471 2 2 221490-211481 218476 high H CO 322-221 2 218482 high ? 218498 low ? 218554 low ? 218575 high aGg′-(CH OH) 221390-211381 2 2 2213100-211391 218708 high ? +aGg′-(CH OH) 2212100-211291 2 2 2212110-2112101 218760 high H CO 321-220 2 218861 low HC N,3 =1 24-1-231 3 7 218903 high OCS 18-17 218981 high HNCO 10110-919 A&A–ms,OnlineMaterialp8 Table1.Continued Frequencya S/Nb Identificationc Quantumnumbers (MHz) 219089 medium aGg′-(CH OH) 2210130-2110121 2 2 2210120-2110111 219174 medium HC N,3 =1 241-23-1 3 7 219242 medium ? 219263 low ? 219276 low SO 22715-23618 2 219385 medium aGg′-(CH OH) 229140-219131 2 2 229130-219121 219398 low ? 219410 low ? 219441 low ? 219474 low ? 219540 medium HNCO,3 =1 10110210-91929 5 +aGg′-(CH OH) 222211-212200 2 2 219551 high HNCO 1047-946 1046-945 +CH DOH 5151-4141 2 219560 high C18O 2-1 219580 low aGg′-(CH OH) 221211-211200 2 2 219656 high HNCO 1038-937 1037-936 219719 low ? 219735 high HNCO 1029-928 1028-927 219765 medium aGg′-(CH OH) 204161-194150 2 2 219798 high HNCO 10010-909 219803 high ? +aGg′-(CH OH) 228150-218141 2 2 219825 low ? +CH OCHO,3 =1 181083-171073 3 t 181093-171083 219892 low ? 219908 high H 13CO 312-211 2 219950 high SO 56-45 219965 medium SO 56-45 219984 high CH OH 253220-244200 3 219994 high CH OH 235190-226170 3 220030 low ? +CH OCHO,3 =1 18993-17983 3 t 189103-17993 220038 high t-HCOOH 10010-909 220072 high CH DOH 5150-4140 2 220079 high CH OH 8080-7160 3 220126 medium ? 220153 low HNCO,3 =1 10010210-90929 5 220167 high CH OCHO 174132-164122 3 +HNCO,3 =1 1037210-93629 5 1038210-93729 220178 high CH CO 11111-10110 2 220191 high CH OCHO 174130-164120 3 220195 medium ? +HNCO,3 =1 1029210-92829 5 220296 low ? 220332 high ? 220343 low ? 220363 medium ? 220369 low ? 220402 high 13CO 2-1 +CH OH 10-550-11-480 3 +aGg′-(CH OH) 227160-217151 2 2 Notes.aObservedfrequencyoftheemissionline.bPeaksignal-to-noiseratioofthe(tentatively)detectedline.Highmeans>9,mediumbetween 9and6,andlowbetween6and3. cAquestionmarkmeansanunidentifiedline. Amoleculenameaccompaniedbyaquestionmarkreferstoa partiallyunidentifiedline:anidentifiedmoleculeemitsatthefrequencyofthedetectedline;howeveritspredictedlineintensityisweakerthanthe observedoneandthustheremustbecontributionfromanother(unidentified)species. Alllinesseparatedby ∼< 4MHzareblendedinourWideX data. A&A–ms,OnlineMaterialp9 Table2.PropertiesofidentifiedemissionlinesdetectedtowardthecontinuumpeakemissionofIRAS2Aaround219GHz Restfrequency Moleculea E b Size(FWHM)c P.A.d Fluxe n f up crit,100K (MHz) (K) (arcsec) (◦) (Jy/beam) (cm−3) 216945.60 CH OH(+?) 56 0.7×0.4(±0.03) 30 0.51 7.1e6 3 216966.65 CH OCHO 111 0.47×0.40(±0.05)⋆ 41 0.25 3 217104.98 SiO 31 - - - 4.7e6 217193.17 CH OCH 253 0.48×0.15(±0.1) 33 0.04 3 3 217238.53 DCN 21 1.13×0.56(±0.07)⋆ 34 0.37 217299.20 CH OH,3 =1 374 0.5×0.3(±0.03)⋆ 41 0.40 3 t 217359.28 CH DOH 277 0.9×0.3(±0.3) −45 0.04 2 217447.90 CH DOH(+aGg′-(CH OH) ) 265 point 0.043 2 2 2 217642.86 CH OH,3 =1 746 0.46×0.23(±0.05) 62 0.14 3 t 217886.39 CH OH 508 0.51×0.33(±0.04)⋆ 48 0.30 3 218222.19 H CO 20 1.4×0.8(±0.05)⋆⋆ 25 0.83 5.0e6 2 218280.90 CH OCHO 100 0.45×0.35(±0.1) −31 0.07 3 218297.89 CH OCHO 100 0.41×0.20(±0.09) 21 0.09 3 218316.39 CH DOH 33 0.64×0.29(±0.1) −36 0.09 2 218324.71 HC N 131 0.75×0.45(±0.05)⋆ 21 0.19 3 218440.05 CH OH 45 0.79×0.50(±0.03)⋆ 27 0.81 7.8e7 3 218459.65 NH CHO 61 0.34×0.20(±0.07)⋆⋆ 72 0.1 2 218475.63 H CO 68 1.0×0.60(±0.03)⋆⋆ 22 1.0 5.6e6 2 218574.68 aGg′-(CH OH) 207 0.88×0.25(±0.3) 40 0.05 2 2 218705.81 (?+)aGg′-(CH OH) 195 point 0.04 2 2 218760.07 H CO 68 1.0×0.70(±0.03)⋆⋆ 21 0.96 6.1e6 2 218903.35 OCS 100 0.9×0.6(±0.02)⋆ 25 0.89 4.0e5 218981.17 HNCO 101 0.45×0.26(±0.05)⋆ 35 0.21 8.2e7 219089.73 aGg′-(CH OH) 173 point 0.04 2 2 219173.75 HC N,3 =1 452 point 0.03 3 7 219385.18 aGg′-(CH OH) 164 point 0.03 2 2 219540.33 HNCO,3 =1(+aGg′-(CH OH) ) 902 point 0.04 5 2 2 219547.09 HNCO(+CH DOH) 709 point 0.03 2 219551.48 CH DOH(+HNCO) 26 0.57×0.26(±0.09) 61 0.12 2 219560.35 C18O 16 5.0×4.0(±0.15) −80 3.0 9.6e3 219580.67 aGg′-(CH OH) 122 point 0.03 2 2 219656.71 HNCO 448 0.38×0.10(±0.09)⋆ 23 0.08 219733.85 HNCO 228 0.59×0.14(±0.07) 39 0.15 219764.92 aGg′-(CH OH) 113 point 0.03 2 2 219798.32 HNCO 58 0.60×0.27(±0.05)⋆ 37 0.24 7.6e6 219803.67 (?+)aGg′-(CH OH) 156 point 0.05 2 2 219908.48 H 13CO 33 0.93×0.57(±0.05) 19 0.34 2 219949.44 SO 35 - - - 3.7e6 219983.99 CH OH 802 0.31×0.18(±0.1) 53 0.08 3 219993.94 CH OH 776 0.31×0.11(±0.1) 63 0.07 3 220038.07 t-HCOOH 58 0.39×0.07(±0.11)⋆ 33 0.10 220071.80 CH DOH 17 0.65×0.44(±0.05) 42 0.31 2 220078.49 CH OH 97 0.63×0.43(±0.03)⋆ 25 0.65 2.9e7 3 220166.88 CH OCHO(+HNCO,3 =1) 103 0.71×0.20(±0.08) 55 0.08 3 5 220178.19 CH CO 46 0.60×0.53(±0.07) 85 0.16 2 220190.28 CH OCHO 103 0.72×0.27(±0.11) 55 0.08 3 220193.86 (?+)HNCO,3 =1 967 0.60×0.39(±0.16) −5 0.07 5 220398.68 13CO(+CH OH) 16 9.5×5.4(±0.30) 47 3.6 9.7e3 3 220401.37 CH OH(+13CO) 252 0.45×0.25(±0.04) 48 0.28 9.3e6 3 Notes. aMoleculeidentifiedtobethesourceofthelineemission. WhentwolinesaretoocloseinfrequenciestobeseparatedwiththeWideX channelwidth,thesecondaryspectrallineisindicatedinparentheses. bUpper-levelenergyofthetransition. cSizeofthebestfitofanellipticalGaussiantothevisibilities,seetextforfurtherdetails.Gaussianfitswereperformedonthechannelshowingthe maximumemission(ourdatahasaspectralresolutionof3.9MHz∼2.7 kms−1). MostlinesaredetectedatthesystemicvelocityV ∼7(±0.5) sys kms−1.Twonotablelinesshowseveralblue-shiftedvelocitycomponents:SiOshowsemissionat7,3,-14.5,and-32.5kms−1,whileSOisdetected atvelocities6.5,-0.5,and-14.0kms−1.NoFWHMisindicatedwhenthemolecularemissionisdominatedbyanoutflow-orjet-likestructure,as determinedbyapreliminaryinspectionoftheemissionmapslineperline. The⋆symbolindicatesthepresenceofasecondarycomponenttobe fittedatadifferentpositioninthemap. The⋆⋆ symbolindicatesthat,inadditiontothecomponenttowardsIRAS2Athelinealsotracesoutflow and/orcomplexstructuresatotherlocationsinourmaps. dPositionangleoftheellipticalGaussian,whenanellipticalGaussianfitcouldbeperformedsuccessfully. eFluxattributedtothebestfitwithaGaussiancomponentlocatedatthecenteroftheprotostellarenvelope. fCritical density of the transition, computed at 100K, using the collision rates compiled in the LAMDA database when available. http://home.strw.leidenuniv.nl/~moldata/ A&A–ms,OnlineMaterialp10 Fig. 1. Emission and residual maps of the continuum emission and CH OCHO line emission at 217GHz. (a) The left and right panels, 3 respectively,showthePdBIcontinuumemissionmapandresidualsmap.Theresidualsmapwasobtainedbyremovingthetwosecondarysources aspointsources,thenremovingthebest-fitpower-lawmodelvisibilitiesfromthedatavisibilities,andimagingtheresidualstable.Contoursshow thelevelsof3σ,5σ,and8σ,andthen10σto100σin10σsteps. Thecrossshowsthephasecenterofourobservations,coincidingwiththepeak ofthecontinuumemissionat1.4mm. (b)Theleftandrightpanels,respectively,showtheCH OCHOemissionandresidualmaps. Inthemaps, 3 thermsnoiselevelisσ=2.8mJy/beam.Contoursshowthe3σ,5σ,and8σ,andthen10σto60σin10σsteps.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.