Astronomy&Astrophysicsmanuscriptno.iras2-kinematics cESO2014 (cid:13) February3,2014 LettertotheEditor ⋆ ⋆⋆ First results from the CALYPSO IRAM-PdBI survey I. Kinematics of the inner envelope of NGC1333-IRAS2A S.Maret1,A.Belloche2,A.J.Maury3,F.Gueth4,Ph.André5,S.Cabrit6,1,C.Codella7,andS.Bontemps8,9 1 UJF-Grenoble1/CNRS-INSU,InstitutdePlanétologieetd’AstrophysiquedeGrenoble,UMR5274,Grenoble,F-38041,France 2 Max-Planck-InstitutfürRadioastronomie,AufdemHügel69,53121Bonn,Germany 3 Harvard-SmithsonianCenterforAstrophysics,60Gardenstreet,Cambridge,MA02138,USA 4 4 IRAM,300ruedelapiscine,38406SaintMartind’Hères,France 1 5 LaboratoireAIM-Paris-Saclay,CEA/DSM/Irfu-CNRS-UniversitéParisDiderot,CE-Saclay,F-91191Gif-sur-Yvette,France 0 6 LERMA,ObservatoiredeParis,CNRS,ENS,UPMC,UCP,61Avdel’Observatoire,F-75014Paris,France 2 7 INAF-OsservatorioAstrofisicodiArcetri,LargoE.Fermi5,I-50125Firenze,Italy 8 UniversitédeBordeaux,LAB,UMR5804,F-33270Floirac,France n 9 CNRS,LAB,UMR5804,F-33270Floirac,France a J Received...;accepted... 1 3 ABSTRACT ] A ThestructureandkinematicsofClass0protostarsonscalesofafewhundredAUispoorlyknown.Recentobservationshaverevealed thepresenceofKepleriandiskswithadiameterof150-180AUinL1527-IRSandVLA1623A,butitisnotclearifsuchdisksare G commoninClass0protostars.Herewepresenthigh-angular-resolution observationsoftwomethanollinesinNGC1333-IRAS2A. . Wearguethattheselinesprobetheinnerenvelope,andweusethemtostudythekinematicsofthisregion.Ourobservationssuggest h thepresence ofamarginalvelocitygradientnormal tothedirectionoftheoutflow. However,thepositionvelocitydiagramsalong p thegradientdirectionappearinconsistentwithaKepleriandisk.Instead,wesuggestthattheemissionoriginatesfromtheinfalling - o andperhapsslowlyrotatingenvelope,aroundacentralprotostarof0.1 0.2M .Ifadiskispresent,itissmallerthanthediskof r L1527-IRS,perhapssuggestingthatNGC1333-IRAS2Aisyounger. − ⊙ t s Keywords. ISMindividualobjects:NGC1333-IRAS2A–ISM:kinematicsanddynamics–ISM:molecules–Stars:formation a [ 2 1. Introduction structures are slowly rotating infalling envelopes rather than v centrifugallysupporteddisks(Bellocheetal.2002;Chiangetal. 6 Understanding the first steps of the formation of protostars 8 2010). On smaller scales (severalhundredAU), little is known 9and protoplanetarydisks is a major unsolvedproblem of mod- on the envelope/disk structure and kinematics. Only two Class ern astrophysics. Observationally, the key to constraining pro- 6 0 protostars,L1527-IRSand VLA1623A,show an evidenceof tostar formation models lies in high-resolution studies of the . a compact (150 AU to 180 AU in diameter) Keplerian disk 1youngest protostars. Because their lifetime is only t 105 yr (Tobinetal. 2012; Murilloetal. 2013). Studying these regions 0 ∼ and most of their mass is still in the form of a dense en- requires observations of specific (optically thin) tracers of the 4 velope (M << M ), Class 0 protostars are likely to re- 1 env innerregionto avoid contaminationby the outflow and the ex- tain detaile∗d information on the initial conditions and detailed : tended envelope. Methanol lines are good specific probes of vphysicsofthecollapsephase(Andréetal.2000).However,the theseregions,aswediscussbelow. iphysics of Class 0 protostars is still surprisingly poorly under- X stood, due to the paucity of the sub-arcsecond (sub)mm ob- Inthisletter,wepresentobservationsoftwomethanollines rservations required to probe their innermost (100 AU) regions. intheNGC1333-IRAS2AClass0protostar(hereafterIRAS2A) a Several basic questions thus remain open, such as the mere locatedinthePerseusmolecularcomplexat235pc(Hirotaetal. existence of accretion disks during the Class 0 phase, or the 2008). These observations are part of the CALYPSO (Con- structure of the velocity field in Class 0 envelopes (e.g., rela- tinuum And Line in Young Proto-Stellar Objects) survey1, an tive importance of inflow, rotation and outflow). On the large IRAM Plateau de Bure Interferometer (hereafter PdBI) large scales, some of the Class 0 sources show evidence of flat- programthat aims at studyinga largesample of Class 0 proto- tenedstructures,extendingroughlyperpendiculartotheoutflow starsatsub-arcsecondresolution.Weusetheselinestoprobethe over 10,000 AU (Bellocheetal. 2002; Looneyetal. 2007; kinematicsoftheprotostellarenvelopeon 200AUscales,and Tobin≥etal.2010).However,lineobservationsindicatethatthese todetermineifadiskispresent.Twocomp∼anionletterspresent the complex organic molecule (COM) emission (Mauryetal. ⋆ BasedonobservationscarriedoutwiththeIRAMPlateaudeBure 2014)andthejetproperties(Codellaetal.2014). interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany),andIGN(Spain). ⋆⋆ Table 1 is only available in electronic form via http://www.edpsciences.org 1 http://irfu.cea.fr/Projets/Calypso/ Articlenumber,page1of7 A&Aproofs:manuscriptno.iras2-kinematics Fig.1.ContinuumandlineemissionsobservedtowardsIRAS2AwiththePdBI.Theleftpanel showsthe1mmcontinuumemission. Contour spacingis10mJybeam 1 (6.6σ).Theotherpanelsshowthevelocityintegratedintensitiesofthe1mmand3mmmethanollines(blueandred − contours) together withthecontinuum (grayscale image). Theblueand redcontours correspond tovelocities< 6.5kms 1 and> 6.5kms 1, − − respectively.Inthecenterpanel,theblueandredcontoursarealmostcoincident.Thecontourspacingsare100mJybeam 1 kms 1 (3.2σ)and − − 30mJybeam 1kms 1(2.1σ)forthe1mmand3mmlines,respectively.Ineachpanelthedashedellipseindicatesthesizeandorientationofthe − − synthesizedbeam.Thedashedlineshowstheorientationoftheoutflow(whichhasaP.A.of25 ; Codellaetal.2014). ◦ Fig.2. Realpartofthevisibilityofthe1mm (left panel) and 3 mm (right panel) methanol lines as a function of the UV radius (black points with error bars). The visibilities have been averaged over the line profile, and then averaged circularly. The red solid line in each panelshowstheresultofaGaussiansourcefit, while the red dotted line shows the result of apoint source fit.Thedashed lineintheright panelshowstheresultofaGaussiansourcefit with a FWHM size fixed to that of the 1 mm line(0.44 ).Theblackdottedlineineachpanel ′′ indicatesthezerolevel. 2. Observations naturalweighting,anddeconvolvedusingthestandardCLEAN algorithm in the MAPPING program. The synthesized beam is Observations of IRAS2A were carried out with the PdBI be- 0.79 0.76 (P.A. 70 ) and 1.71 1.31 (P.A. 54 ) for the tween November 2010 and February 2011 using the A and C ′′ × ′′ ◦ ′′ × ′′ ◦ 1mmand3mmlines,respectively.TheRMSnoiseperchannel configurations of the array. The CH OH (5 4 3 = 0 E ) 3 1 − 2 t 1 in the final datacubes is 21 mJy/beam and 5 mJy/beam for the lineat216.945600GHz(1mm)wasobservedusingthenarrow- 1mmand3mmlines,respectively. bandbackend,providingabandwidthof512channelsof39kHz (0.05 km s 1) each. The CH OH (1 2 3 = 1 E ) line at − 3 0 1 t 1 − 93.196670 GHz (3 mm) was also observed using the narrow- band backend, but with 256 channelsof 312 kHz (1.0 km s 1) − each. Calibration was done using CLIC, which is part of the GILDAS software suite2. For the 1 mm observations, the phase RMS was < 80◦, with precipitable water vapor (PWV) be- 3. Resultsandanalysis tween 0.5 mm and 2 mm, and system temperatures (T ) be- sys tween 100K and250K.For the3 mm observations,the phase Figure1showsthe1mmcontinuumemissiontogetherwithve- RMS was < 40 , with PWV of 2-3 mm and T of 70-80 K. ◦ sys locityintegratedintensitymapsofthe1mmand3mmmethanol The continuum emission was removed from the visibility ta- lines.Continuumemissionisdetectedinthreesources,whichare bles to produce continuum-free line tables. The visibilities of labeledMM1,MM2,andMM3inCodellaetal.(2014).Wede- the 1 mm methanol line were resampled at a spectral resolu- tect1mmand3mmmethanollineemissiontowardsthebright- tion of 0.5 km s 1 to improve the signal-to-noise ratio. Spec- − estcontinuumpeak(MM1)withasignal-to-noiseratioattheline tral datacubes were produced from the visibility tables using a peaksof21and8forthe1mmand3mmmethanollines,respec- 2 http://www.iram.fr/IRAMFR/GILDAS/ tively.Emissionfromtheselinesiscompact.Inaddition,noclear Articlenumber,page2of7 S.Maret etal.:KinematicsoftheinnerenvelopeofNGC1333-IRAS2A Fig.3. First-ordermomentmapsofthe1mm (left panel) and 3 mm (right panel) methanol lines. In each panel the solid contours show the velocity integrated lineintensity. The con- tour spacingsare200mJybeam 1 kms 1 and − − 20mJybeam 1kms 1forthe1mmand3mm − − methanol lines, respectively. The dashed line showstheorientationoftheoutflow,whilethe dashed arrow indicates the orientation of the velocity gradient as determined from thefirst- ordermomentfit(seeSect.3).Thelineandar- rowintersectatthepositionofMM1. differencebetweentheblue-shiftedandred-shiftedemission(at respectively), the amplitude and orientation obtained for each velocities<6.5kms 1and>6.5kms 1,respectively3)isseen. lineareconsistent.Thegradientorientationsareindicatedbyar- − − Todeterminethesizeofthelineemission,wefittedthevis- rows in Fig. 3. Interestingly, they are roughly perpendicularto ibilitiesassumingthattheemissionfollowsaGaussiandistribu- the outfloworientation,as onewouldexpectfor rotationof the tion.Weaveragedthevisibilitiesovertheentirevelocityrangeof protostellarenvelopeordisk. theline,andweperformedafitofthevelocityaveragedvisibili- Figure 4 shows the position-velocity (hereafter P.V.) dia- tiesintheUVplane.Figure2showstheresultofthefit,together gramsforbothlines.ThecutsweredonealonganaxiswithP.A. withtherealpartofthevisibilities(averagedasafunctionofthe of 107 , and centered on the peak of the 1 mm line. Figure 4 ◦ UV radius for clarity). The fit parametersare given in Table 1. also shows the first-order moment measured along the cut. No AsseeninFig.2,the1mmmethanollineemissionisspatially clearsignatureofrotationisapparentintheP.V.diagram.Both resolved, and it is reasonably well fitted by a Gaussian source diagrams are almost symmetric with respect to the cut center withaFWHMsizeof0.44 0.03 .Ontheotherhand,the3mm position. However, the first-order moment measured along the ′′ methanolline is only marg±inallyresolved; the emission is best cutincreasesfromnegativetopositiveoffsets.Thisisconsistent fittedbyaGaussianof0.59 0.11 FWHM,butitssizeisalso withthepresenceofagradientalongthisaxis.Thisincreasein ′′ ± consistent(ata2σlevel)withthatofthe1mmline.Thisisalso the first-order moment along the cut is also marginal (see the apparentintherightpanelofFig.2, whichshowstheexpected errorbarsinFig.4),butthesametrendisseenforbothlines. realpartofthevisibilityforthe3mmline,assumingaGaussian sourceof0.44 .Thepositionofthe1mmmethanollinepeakis, ′′ withintheuncertainties,consistentwiththepositionoftheMM1 4. Discussionandconclusions continuumsource.Althoughthepositionofthe3mmmethanol Our observations reveal compact methanol emission (0.4 line appears slightly offset, it is also consistent (at a 5σ level) ′′ FWHM, i.e., 90 AU in diameter) centered on the position of with the position of MM1. Table 1 also gives the linewidths at ∼ theMM1continuumsource.Theobservedemissionhasseveral the position of the 1 mm line emission peak. Both the 1 mm possibleorigins.First,methanolemissioncanarisefromshocks, and3mmlineshaveGaussianshapes,withaFWHMof3.3and as a result of ice sputtering; indeed, methanol emission is ob- 4.1kms 1,respectively. − served towards the end points of the large scale east-west out- Figure3showsthefirst-ordermoment(meanvelocity)maps flow of IRAS2A (Bachilleretal. 1998). It is thereforepossible for both lines. From visual inspectionof the momentmaps, no thattheemissionobservedhereiscausedbyshocksonsmaller clearvelocitygradientisapparent.Wehavethereforeattempted scales.However,thelineGaussianshapesandsmalllinewidths, to fit the first order moment maps with a linear function of togetherwiththestrikingcontrastbetweenthemethanolandthe the R.A. and Dec. offsets. This linear gradient is expected if SO and SiO emission (which are associated with the shocked the emitting region is rotating as a solid body (Goodmanetal. gas;seeCodellaetal.2014),donotfavorthishypothesis. 1993).Althoughsolidbodyrotationisnotrealistic,itprovidesa Second,theemissionmayarisefromtheinnerregionofthe firstindicationofwhetherornotrotationispresent.Becausethe envelopewherethetemperatureisgreaterthan 100K(theso- mapsshownin Fig.3 areoversampled,we havefitted thefirst- ∼ called hot corino). Maretetal. (2005) did a single-dish survey order momentmeasured every half synthesized beam (Nyquist of the methanol emission from a sample of six Class 0 proto- sampling).Thesepixelswereweightedby1/σ2,whereσisthe stars,andfoundabundancejumps(byabout2ordersofmagni- 1σ noise on the first-order moment, computed from the noise tude)intheinnerenvelopesoffourofthem(includingIRAS2A). per channel in the data cubes (see Belloche 2013, Eq. (2.3)). They interpreted these abundance jumps as due to the thermal Results of the fit are given in Table 1. For the 1 mm line, we evaporationof grain mantles in the hot corino. Several COMs, find a gradient with a P.A. α = 107 27 and an amplitude G = 0.23 0.11kms 1/ (202 97k±ms 1◦/pcat235pc).For such as acetonitrile, methyl formate, or dimethyl ether, have the3mm,±wefindα=−13′1′ 36±andG =0−.47 0.29kms 1/ alsobeendetectedinIRAS2Awithsingle-dish(Bottinellietal. (413 255kms 1/pc).Alt±houg◦hthegradientd±etectionis−onl′y′ 2007)andinterferometric(Mauryetal.2014)observations.The ± − similar COM (Mauryetal. 2014) and methanol emission sizes marginal(2.1σand1.6σforthevaluesofGat1mmand3mm, (this study) strongly suggest a common origin. Compact water (H18O) emission has also been detected in IRAS2A with the 3 In thepresent study, we adopt av of 6.5 km s 1, as determined 2 LSR − PdBI(Perssonetal.2012).ThesizeoftheH18Oemission(0.8 ) fromafitofthefirst-ordermomentmapofthe1mmmethanolline(see 2 ′′ below). is twice as large as the methanolemission. However,the H18O 2 Articlenumber,page3of7 A&Aproofs:manuscriptno.iras2-kinematics Fig.4. Position-velocitydiagramsforthe1mm (left panel) and 3 mm (right panel) methanol lines. The contour spacing is 50 mJy beam 1 − (2.4σ) and10mJybeam 1 (2σ) forthe1mm − and 3 mm methanol lines, respectively. The red points with error bars show the first order moment measured at each position offset.The horizontal dashed line shows the source v LSR (6.5kms 1).Theverticaldashedlinesindicate − thecenterofthecut. mapsshowsomeemissionassociatedwiththeoutflow.Thiscon- M . 0.1 0.2 M . This estimate is in reasonable agreement tamination by the outflow may explain the larger extension of wi∗ththeva−lueof0.2⊙5M obtainedbyBrinchetal.(2009). the H18O emission with respect to the methanol and the COM The1mmlineP.V.d⊙iagramcanbeusedtotestthedisksce- 2 emission. Dust continuum observations and modeling indicate nario.WehavecomputedsyntheticP.V.diagramsforaKeplerian that the radiusat which the dust temperatureexceeds100K in diskwithvariousvaluesofM (seeAppendixAfordetails).We IRAS2Aisabout50AU(Jørgensenetal.2002)4.Thisradiusis findthattheobservedP.V.dia∗gramisinconsistentwithaKeple- in goodagreementwith the size of the methanolemission,and riandisk,regardlessofthemassofthecentralobject.Inparticu- thereforefavorsthehotcorinoscenario. lar,aKepleriandiskwithM =0.1M wouldproducetwopeaks Athirdscenarioisthattheemissionoriginatesfromthesur- intheP.V.diagram,whicha∗renotob⊙served.Ontheotherhand, face of a disk. From SMA observationsof the dustcontinuum, a Kepleriandisk M = 0.01 M would have a single peak P.V. Jørgensenetal. (2005) suggested that IRAS2A harbors a cir- diagram,butthepre∗dictedlinew⊙idthwouldbe2-3timessmaller cumstellardiskof200-300AUindiameter,withamassbetween thanobserved,evenforaveryturbulentdisk. 0.01M and0.1M .Theysuggestedthatthediskcouldbethe To summarize, we favor a scenario in which the methanol major r⊙eservoir of t⊙he COMs and other molecules observed in emission observed in IRAS2A originates in the inner envelope that source. Brinchetal. (2009) modeled the HCN and H13CN ofthe protostar,whichisinfallingandperhapsslowly rotating. (4-3) emission observedwith the SMA towards IRAS2A at 1 Ifadiskispresentandisemittinginmethanol,itisspatiallyun- ′′ resolution,andfoundthatthevelocityfieldwasdominatedbyin- resolvedso its radiusis smaller than45 AU (0.4′′), i.e. smaller fall,withlittlerotation.Aflatteneddisk-likestructuredominated thanthediskofL1527-IRS.Sincethemassofthecentralobject byinwardmotionsisalsofavoredbyPerssonetal.(2012)toex- inL1527-IRS(0.2M ;Tobinetal.2012)iscomparabletothat plaintheH18OemissionobservedinIRAS2A.Ourmethanolob- of IRAS2A, this may⊙suggest that IRAS2A is younger.Higher 2 servationssuggest the presence of a marginalvelocity gradient angularresolutionobservationsare neededto confirmthe pres- orientedroughlyinadirectionperpendiculartothenorth-south ence of rotation in the inner parts of IRAS2A and to measure outflow. The orientation of the gradient is similar to that of a the rotation profile precisely. In addition,observationsof other secondeast-westoutflowdetectedinthissource.However,this Class 0 protostars are needed to obtain more statistics on the second outflow is probably driven by the MM2 source and its presenceofrotationalysupporteddisksinthisphase,andtoes- axis does notpass throughthe position of MM1 (Codellaetal. tablishwhendisksappearduringtheevolutionofprotostars. 2014), while the methanol emission is clearly associated with Acknowledgements. Theresearchleadingtotheseresultshasreceivedfunding MM1.Therefore,the gradientismostlikelycausedbyrotation fromtheEuropeanCommunity’sSeventhFrameworkProgramme(/FP7/2007- oftheinnerenvelopeoradiskabouttheoutflowaxis. 2013/) under grant agreements No 229517 (ESO COFUND) and No 291294 (ORISTARS),andfromtheFrenchAgenceNationaledelaRecherche(ANR), Regardlessof the origin of the emission (i.e., hot corino or underreferenceANR-12-JS05-0005. disk),ifthematerialtracedbythemethanollinesisboundtothe protostellarsystem(asopposedtounboundoutflowmaterialfor example),the linewidthcanbeusedtoestimate thedynamical massofthesystem,M (1 2) rv2/G,wherevistheveloc- References dyn ∼ − ityobservedataradiir,andGisthegravitationalconstant.This André,P.,Ward-Thompson,D.,&Barsony,M.2000,ProtostarsandPlanetsIV, expressionholdsifthelinebroadeningisduetoinfallmotions, 59+ orKeplerianrotationaboutanaxisclosetotheplane-of-the-sky Bachiller, R.,Codella, C.,Colomer,F.,Liechti, S.,&Walmsley,C.M.1998, (see,e.g.,Terebeyetal.1992).Ifweassumethatthevelocityat A&A,335,266 r = 45 AU is 1.65 km/s (i.e., the 1 mm line HWHM), we ob- Belloche,A.2013,inEASPublicationsSeries,Vol.62,25–66 Belloche,A.,André,P.,Despois,D.,&Blinder,S.2002,A&A,393,927 tain M 0.1 0.2 M (to be compared to a total envelope mass Mdyn ≃= 1.7−M ;Jør⊙gensenetal. 2002). Strictly speaking, Bottinelli,S.,Ceccarelli,C.,Williams,J.P.,&Lefloch,B.2007,A&A,463,601 env Brinch,C.,Jørgensen,J.K.,&Hogerheijde,M.R.2009,A&A,502,199 Mdyn is the mass co⊙ntained within a radius of 45 AU, so that Chiang,H.,Looney,L.W.,Tobin,J.J.,&Hartmann,L.2010,ApJ,709,470 Codella,C.,Maury,A.J.,Gueth,F.,etal.2014,acceptedtoA&A Goodman,A.A.,Benson,P.J.,Fuller,G.A.,&Myers,P.C.1993,ApJ,406, 4 A more recent analysis suggests a larger value (90 AU; 528 Kristensenetal.2012) Guilloteau,S.,Dutrey,A.,Wakelam,V.,etal.2012,A&A,548,A70 Articlenumber,page4of7 S.Maret etal.:KinematicsoftheinnerenvelopeofNGC1333-IRAS2A Hirota,T.,Bushimata,T.,Choi,Y.K.,etal.2008,PASJ,60,37 Jørgensen,J.K.,Bourke,T.L.,Myers,P.C.,etal.2005,ApJ,632,973 Jørgensen,J.K.,Schöier,F.L.,&vanDishoeck,E.F.2002,A&A,389,908 Kristensen,L.E.,vanDishoeck,E.F.,Bergin,E.A.,etal.2012,A&A,542,A8 Looney,L.W.,Tobin,J.J.,&Kwon,W.2007,ApJ,670,L131 Müller,H.S.P.,Thorwirth,S.,Roth,D.A.,&Winnewisser,G.2001,A&A,370, L49 Maret,S.,Ceccarelli,C.,Tielens,A.G.G.M.,etal.2005,A&A,442,527 Maury,A.J.,Belloche,A.,André,P.,etal.2014,acceptedtoA&A Murillo,N.M.,Lai,S.-P.,Bruderer,S.,Harsono,D.,&vanDishoeck,E.F.2013, A&A,560,A103 Persson,M.V.,Jørgensen,J.K.,&vanDishoeck,E.F.2012,A&A,541,A39 Terebey,S.,Vogel,S.N.,&Myers,P.C.1992,ApJ,390,181 Tobin,J.J.,Hartmann,L.,Chiang,H.-F.,etal.2012,Nature,492,83 Tobin,J.J.,Hartmann,L.,Looney,L.W.,&Chiang,H.-F.2010,ApJ,712,1010 Articlenumber,page5of7 A&A–iras2-kinematics,OnlineMaterialp6 AppendixA: Syntheticpositionvelocitydiagrams Table1.Linespectroscopicparameters,resultsofthevisibilityfits,and resultsofthefirst-ordermomentfits. foraKepleriandisk TotesttheKepleriandiskscenario,wehavecomputedsynthetic Line 51 423t =0E1 10 213t =1E1 P.V.diagramsforthe1mmmethanolline.Wehaveassumedthat νa(GHz) 2−16.945600 −93.196670 the emissionfollowsa Gaussiandistribution,with a FWHM of Eup(K) 55.9 309.9 0.44′′ (as determined from the visibility fit). The line-of-sight R.A.offsetb(′′) −0.06±0.02 −0.27±0.05 velocity is assumed to be given by (see, e.g., Guilloteauetal. Dec.offset(′′) 0.00 0.02 0.06 0.05 2012) Sizec(′′) 0.44±0.03 0.59±0.11 ± ± I d(mJybeam 1) 457 21 24 5 peak − ± ± Linewidthe(kms 1) 3.30 0.04 4.10 0.07 − v(r,θ)=sin(i) cos(θ) v (r)+v (A.1) ± ± kep LSR I dvf(Jybeam 1kms 1) 1.61 0.02 0.11 0.01 − − ± ± where r and θ are the cylindricalcoordinatesin the disk plane, Rv0g(kms−1) 6.54 0.03 6.76 0.15 ± ± i is the inclination of the disk rotation axis with respect to the αh(◦) 107 27 131 36 ± ± lineofsight(i.e.,i=90◦foranedge-ondisk),vLSRisthesource Gi(kms−1/′′) 0.23±0.11 0.47±0.29 velocityinthelocalstandardofrest,andv (r)istheKeplerian kep velocity Notes. (a) Frequencies are from the CDMS catalog (Mülleretal. 2001) (b) Position of the emission peak, as determined from the vis- ibility fit. Offsets are relative to the continuum position of MM1 GM (03h28m55s.58;31◦14′37′.′057;J2000; Codellaetal. 2014) (c) Decon- vkep(r)= r r ∗ (A.2) v(do)lLveindesopuerackeiFnWtenHsiMtysaitzet,heasspuomsiitniognaocfir1cumlamr Glianuesseiamnisbsrioignhtpneeasks.. (e)LineFWHM.(f)Lineintegratedintensity.(g)Velocityattheposition with G the gravitational constant and M the mass of the central protostar. The line is assumed to∗ have a Gaussian of MM1, obtained from a fit of the first-order moment map. (h) Posi- tion angle of the velocity gradient, from N to E. (i) Velocity gradient shape,withalocallinewidth∆v(r)(FWHM/√8ln(2))equalto amplitude. 0.1v (r), in agreementwith the valuedeterminedin DM Tau kep by Guilloteauetal. (2012). Although this value is uncertain, it cannotexceedv (r)becauseadiskwithalarger∆v(r)would kep be unstable. We assume that the disk is rotating about an axis withi = 60 .Thisisconsistentwiththediskrotatingaboutthe ◦ outflowaxis,whichhasi 45 (Codellaetal.2014).Finally,we ◦ ≥ assumeav of6.5km/s,asourcedistanceof235pc,and M LSR isleftasafreeparameter.Thediskisnottruncatedinradius;we∗ merelyassumethatitslineemissiondecreasesasaGaussian,as mentionedabove.Wecomputeasyntheticdatacubewithapixel size of 0.1 , and a channelwidth of 0.5 km/s. The intensity of ′′ theemissionasafunctionofchanneliscomputedassumingthat theline-of-sightvelocityvariesasafunctionofr andθ follow- ingEq.(A.1).Thisdatacubeisthenconvolvedwiththesynthe- sized beam, assumed to be a Gaussian with a FWHM of 0.8 . ′′ The convolveddata cube is then scaled so that the peak inten- sity matches the observations (453 mJy/beam). Finally, Gaus- sian noise is added in each channel so that the signal-to-noise ratioalsocorrespondstotheobservations( 21). ∼ Figure A.1 shows the synthetic position velocity diagrams we obtainfordifferentvaluesof M . We find thatourobserva- tions are inconsistent with a Keple∗rian disk, regardless of the mass of the centralobject. For M = 0.05M and 0.1M , the syntheticP.V.diagramshavetwop∗eaks,while⊙theobserved⊙P.V. diagramhasonepeak(seeFig.4).For M = 0.01M ,thesyn- theticP.V.diagramissinglepeaked,andth∗epredicted⊙first-order momentalongthecutisconstant,withintheerrorbars.However, thepredictedlinewidthismuchsmallerthanobserved(compare the size of the P.V. contours along the vertical axis in Fig. 4 and A.1). A broader linewidth would require a larger value of ∆v(r).However,wefindthatevenforaveryturbulentdiskwith ∆v(r) = 0.9v (r),thepredictedlinewidthis2-3timessmaller kep than observed. We conclude that the observed methanol emis- sion can notarise from a Kepleriandisk, and mustoriginatein theinfallingandperhapsslowlyrotatinginnerenvelope.Amore detailed modeling of the methanol line emission is needed to determine the precise velocity field of the inner region of the protostarenvelope. A&A–iras2-kinematics,OnlineMaterialp7 Fig.A.1.Syntheticposition-velocitydiagramsforthe1mmmethanolline(graycontours).Thecontourlevelsandaxisrangesarethesameasin Fig.4.Theredpointswitherrorbarsshowthelinecentroidalongthecut.Thediagramshavebeencomputedassumingthattheemissionoriginates inaKepleriandiskwithdifferentmassesofthecentralprotostar(seetext).