InternationalJournalofOdonatology,2016 Vol.19,Nos.1–2,53–61,http://dx.doi.org/10.1080/13887890.2016.1170732 First record of extra-abdominal processes in adult Odonata NataliaA.Matushkina∗ DepartmentofZoology,InstituteofBiology,TarasShevchenkoNationalUniversityofKyiv,Kyiv,Ukraine (Received9October2015;finalversionreceived22March2016) Pairedextra-abdominalprocesses(ap)werefoundinthepleuralregionofabdominalsegments6–9in adultOdonataforthefirsttime.Theyareunsegmentedbulge-likeorrod-likestructuresofdifferentsize, degreeofsclerotizationandmovability.Ashortsearchacrossodonatanfamilieshasshownthatapare inherentforallstudiedAeshnidaeandforsomeotherAnisoptera.Acomparativestudyoffinalstadium larvaehasshownthatapappearasremnantsoflarvallateralspinesoriginallysituatedonlarvaltergites. ThisfactprovidesevidenceaboutthecomplexnatureofthepleuralregionintheAeshnidaeimagowhich includespartoftheareaofthelarvaltergite. Keywords: comparative morphology; homology; appendages; abdomen; heterochrony; Odonata; dragonfly Introduction Abdominal appendage-like processes in insects have attracted special interest among scientists becausetheymayhelpinunderstandingtheearlystagesofinsectevolutionfromanancestorwith developed abdominal legs (e.g. Bitsch, 2012; Suzuki & Palopoli, 2001). The homology-based theories of segment transformation in Arthropoda were often based on peculiar morphologi- cal characters, usually of presumed appendicular origin (e.g. Boxshall,2004, 2013; Giorgianni & Patel, 2005; Kluge, 1989; Williams & Nagy, 2001). In immature insects, the abdominal appendageswerestructurallydiverseandmostlyappearedassimpleintegumentaryoutgrowths like prongs, spines or tubercles, located on the dorsal, lateral or ventral parts of the segments (see review by Bitsch, 2012). Some of these appendage-like processes, like abdominal gills in aquaticnymphsorprolegsofdifferentendopterygoteinsectlarvae,wereregardedasderivatives ofappendageanlagen(Bitsch,2012;cf.Suzuki&Palopoli,2001). Although pterygote insects rarely exhibited the extra-abdominal appendages apart from the genitalia or cerci, most basal insect lineages (Archaeognatha and some Zygentoma) have a plesiomorphicrichlystructuredabdominalventerbearingthestyliandthecoxaleversiblevesi- cles,whichwereregardedaselementsofappendicular origin(Bitsch&Bitsch,2004;Klass& Matushkina,2012).InadultOdonata,abdominalappendage-likestructuresnotassociatedeither withthegenitaliaorwiththecercihavenotpreviouslybeenfound. HereIreportpairedabdominal processes(ap)foundinthepleuralregionofabdominal seg- ments6–9inadultAeshnidaeandsomeotherAnisoptera,whichhasnotpreviouslybeenreported *Email:[email protected] (cid:3)c 2016WorldwideDragonflyAssociation 54 N.A.Matushkina forOdonata.Thesestructureswereobservedincidentallytoabroadcomparativemorphological investigation of the female postabdomen in Aeshnidae (Odonata, Anisoptera); those observa- tions led to the focus of this paper. I discuss the origin of ap in a framework of the segment homologizationbasingonthetransformationofabdominalsegmentsduringmetamorphosis. Materialandmethods Thirty-twoadultfemalesof24speciesofOdonatawereinvestigated,includingsixspecimensof threespeciesofZygoptera,onespecimenofEpiophlebiidae,and25specimensof20speciesof Anisoptera (Table 1). Aeshnidae were chosen as a focus-group of this research for the reasons mentionedintheIntroduction.Representativesofotherdragonflyfamilies,twofullydeveloped finallarvaeofAnaximperator,andonefullydevelopedlarvaofAeshnacyaneawerestudiedto testsomehypothesesofdevelopmentaloriginofap. All materials were first examined with a light microscope and then with a scanning elec- tronmicroscope.Forlightmicroscopy,theabdomensweredissecteddorsolaterally,soakedwith c.10% water solution of lactic acid for 6–12 h to soften the cuticle (for dried specimens only), washed in water and macerated for 10–12 h at room temperature with 10% KOH. The macer- ated abdomens were thoroughly washed in distilled water and examined under glycerin with a stereo-microscope (Leica M205 C, Leica Microsystems, Museum of Zoology, Natural History SenckenbergCollectionsDresden,Germany).Forscanningelectronmicroscopy,thecuticleparts werewashedindistilledwater,dehydratedinagradedethanolseriesandacetone,anddriedatthe criticalpoint(OMCPD7501).Thencuticlepartsweremountedonastub,sputteredwithgold- palladium(OM-SC7640)andexaminedwithaZeissEVO-50SEM(Zeiss,MuseumofZoology, NaturalHistorySenckenbergCollectionsDresden,Germany). The terminologies of Klass (2008) and Matushkina (2008) were used for the abdominal skeletonofthedragonflies. Results Descriptionofextra-abdominalprocesses TheabdominalsegmentofadultOdonataischaracterizedbyanenlargedtergalregionthatforms dorsal,lateralandpartoftheventralsegmentwallandbyanarrowedsternalregionthatispartly coveredbythetergumlaterally.Themembranouspleuralregionisinvaginatedintothebodyand can be partially exposed during respiration movements. The anterior half of the pleural region showsthespiracleinallabdominalsegmentsanteriortotheninthsegment.Sternalsclerotization bearsbilateralcuticularingrowths,theapodemeb(b7inFigure1),whichisanattachmentpoint forthedorsoventralmuscle(muscle15inKlass,2008;muscledvpinMatushkina,2008). In pregenital segments ap is situated in the posterior half of the pleural region, behind the spiracle,equallyfarfromthesternalandtergalsclerotizations.Aboutatthelevelofapthesternal sclerotization usually exhibits the apodeme b flanked by the dorsoventral muscles. Depending on the species, the position of ap in relation to the apodeme varies to some degree (Figure 1). Ventralregionsoftheeighthandninthgenitalsegmentsaremodifiedduetolocationofgenitalia. Sternalsclerotizationoftheeighthsegmentisshorterandwiderascomparedwiththepreceding segments; the basis of ap 8 is situated closer to the posterior edge of the segment. In ninth segments, the ventral region is entirely occupied by the ovipositor structures; ap 9 is situated veryclosetotheposteroventralcorneroftheninthtergite,ontheinnermembraneousfoldingof thetergite.Asarule,aparecoveredbysurroundingcuticleandarenotvisibleexternally. Table 1. Materialexaminedinthisstudy,presenceofextra-abdominalappendage-likeprocesses(ap)inadultsandlateralspinesinlarvae. Presenceofsharp Numberand lateralspinesin kindof Presenceofapon larvaon6/7/8/9 Systematicassignment Species preservation 6/7/8/9segment segment* An.:Ae:Aeshnini AeshnaaffinisVanderLinden,1820 1etf +/+/+/+ (conical) ±/+/+/+ An.:Ae:Aeshnini Aeshnacyanea(Müller,1764) 1etf,1etl +/+/+/+ (conical) ±/+/+/+ An.:Ae:Aeshnini Amphiaeschnaampla(Rambur,1842) 1df –/+/+/–(conical) ? An.:Ae:Aeshnini Coryphaeschnaadnexa(Hagen,1861) 1df –/+/+/–(vestigial) –/±/±/± (veryslender) An.:Ae:Aeshnini Rhionaeschnaabsoluta(Calvert,1952) 1df –/+/+/+ (vestigial) ? An.:Ae:Anactini AnaximperatorLeach,1815 4etf,2etl +/+/+/+ +/+/+/+ An.:Ae:Brachytronini Austroaeschnaunicornis(Martin,1901) 1df –/±/±/– +/+/+/+ An.:Ae:Brachytronini Brachytronpratense(Müller,1764) 1etf ±/±/±/+ ±/+/+/+ An.:Ae:Brachytronini Epiaeschnaheros(Fabricius,1798) 2df ?/ ±/±/± +/+/+/+ AAnn..::AAee::GGoommpphhaaeesscchhnniinnii BBoaysieareiascvhinnaosjaan(aStaay,(S1a8y4,01)840) 21ddff +/+±//+±//–±(w/–el(lcdoenvicealol)ped) ++//++//++//++ ((aallllssttrroonngg)) First An.:Ae:Gomphaeschnini Gomphaeschnaantilope(Hagen,1874) 1df –/–/+/– +/+/+/+ re c AAnn..::AAee::GGoymnapchaanethscahgnininii TGeylnepahcalenbtihaataildlyealardMiCaratminp,i1o9n0i9nTillyard,1916 11ddff –/–±/–//–±/–/– ±+//++//++//++ ordo An.:Ae:Gynacanthagini Triacanthagynaseptima(SelysinSagra,1857) 1df –/–/±/– ? fe x An.:Petaluridae PhenesraptorRambur,1842 1df –/–/–/– –/–/–/– tr a An.:Cordulegasteridae CordulegasterbidentataSelys,1843 1etf –/–/–/– –/–/–/– -a An.:Corduliidae Epithecabimaculata(Charpentier,1825) 1etf –/–/+/+ –/–/+/+ bd o An.:Gomphidae Gomphusvulgatissimus(Linnaeus,1758) 1etf –/–/– –/–/–/– m An.:Libellulidae OrthetrumcancellatumLinnaeus,1758 1etf –/–/±/± –/–/±/± ina Az:Epiophlebiidae Epiophlebiasuperstes(Sélys,1889) 1etf –/–/–/– –/–/–/– lp Zyg.:Eupheidae Epallagefatime(Charpentier,1840) 2etf [+/+/+/–](vestiges) [+/+/+/–](gills) roc Zyg.:Calopterygidae Hetaerinaamericana(Fabricius,1798) 3etf –/–/–/– –/–/–/+ es s Zyg.:Coenagrionidae Coenagrionpulchellum(VanderLinden,1825) 1etf –/–/–/– –/–/–/– es in *Basedonliteraturedataandunpublishedobservations.Abbreviations:et,inethanol;d,dry;f,female;l,finallarva;An.,Anisoptera;Ae.,Aeshnidae;Az.,Anisozygoptera;Zyg.,Zygoptera; +,large; ±,medium, ad –,smallorabsent;[...],presenceoflarvalgillsandtheirvestiges;?,informationabsent. ult O d o n a ta 5 5 56 N.A.Matushkina Figure 1. Varietyofappendage-likeprocessesinfemalesofAnaximperator,lightmicroscopy:(a)maceratedseventh segmentventrally;(b)non-maceratedeighthsegmentventrallywithinsetenlargedin(d);(c–e)morphologicalvariability ofappendage-likeprocesses.ap7,ap8,ap9,processesonpleuralareaofseventh,eighthandninthsegmentwall,respec- tively;b7,postspiracularapodemeonseventhsternum;p,posteriordirection;si7,spiracleofseventhsegment;“ST7”, “ST8”,seventhandeighthsternums,respectively(forscleritecompositionofsternumindragonfliesseeKlass2008); TG7,TG8,TG9,seventh,eighthandninthtergites,respectively.Emptyarrowheadindicatesproximalendofprocessap. Scalebars:(a),(b)0.001mm;(c–e)0.2mm. Eachapisahollowunsegmentedoutgrowthofthebodywallwithoutintrinsicmusclesortra- cheation.OnenewlyemergedspecimenofAnaximperatorwasfoundtobearthemostprominent ap(upto1mmlong),whichcanbeeasilyvisibleexternally.Eachapconsistsofanarrowneck- likestalkwithdelicatemembranouswallextendingtoastiffsclerotizedandmelanizedsharply pointed rod (Figures 1a, c, 2c, e). Similarly structured ap were found on the ninth segment in A. parthenope. Presence of the stalk implies these ap might be highly movable. Other teneral specimensofAnaximperatorbearaweaklysclerotizedworm-likeap8ofc.350–400mkmlong (Figure1b,d).Mostusually,apisrepresentedbyaweaklysclerotizedconicaloutgrowthwithout evidentwaist(Figure2b).Thebaseofapsclerotizationmayhaveacomplexshapewithoutclear margins, whereas the tip of ap is usually curved posteriorly. In Epiaeschna heros, a short ap8 Firstrecordofextra-abdominalprocessesinadultOdonata 57 (a) (b) (c) (d) (e) (f) (g) Figure 2. Comparisonofvestigiallarvalgillbyscanningelectronmicroscopyin(a)femaleEpallagefatima(Euphaei- dae); and (b–g) appendage-like processes in females of Aeshnidae: (b) Aeshna affinis; (c, e) Anax imperator; (d) Brachytronpratense;(f,g)Epiaeschnaheros.TG8,TG9,eighthandninthtergites,respectively;ap8,ap9,processes onpleuralareaofeighthandninthsegmentwall,respectively.Emptyarrowheadindicatesvestigeoflarvalgill.Dou- blearrowindicateslateral(l)andposterior(p)directions.Scalebars:(a),(c),(e)0.1mm;(b)0.3mm;(d)0.05mm; (f)0.02mm;(g)0.001mm. showsaregularapicalsculpture(Figure2f,g).Severalspecimensbearaverysmallmembrane- ous ap in the form of a nipple-shaped or finger-shaped protuberance or a bulge (Figure 1e). In caseofitsmaximalreduction,apappearsasaswollenregionofpleuralmembrane. Fully developed or vestigial ap were found in all representatives of Aeshnidae on seventh– ninth abdominal segments (less often on seventh and eighth segments or on sixth–ninth segments) (see Table 1). In Basiaeshna janata ap were detected on fifth–eighth abdominal segments. Among other Odonata studied here, ap was found in Epitheca bimaculata (Corduli- idae) and Orthetrum cancellatum (Libellulidae). Age of imago, its body size and degree of 58 N.A.Matushkina sclerotization, taxonomic affiliation of the specimen and position on the abdomen apparently donotaffectthemorphologyofap. Correspondencewithlarvallateralspines Aeshnidlarvaearecharacterizedbyprominentlateralspinesontheposteriorhalfoftheabdomen (Table 1). These spines are very large, sharply pointed outgrowths of the lateral edge of 5–9 tergiteswhicharegraduallyenlargedinsubsequentsegments.Theregionbearingthespineisnot separatedfromtheremainingtergitewall.Thepleuralregioninafinalinstarlarvaconsistsoftwo wellsclerotizedplates–thetriangularanterolateralone,PLa,andtheposteriorone,PLp(Figure 3a,d).Unlikeinprecedingsegments,PLa8isverysmallandPLp8showsacleartransverserow ofdenticlesthatlaterallyendsatthelateralspine.PLpbearstheremnantofthespiracle“si”asa darkwell-borderedpatchsituatedinitsanteriorregion.Inthestudiedfinallarvaewithdeveloped imaginal cuticle under the larval cuticle, the larval spine represents a mostly empty outgrowth bearing only a small soft, pale ap inside (Figure 3a–c). In the imago, instead of the firm larval pleuralplatesthereisamostlymembraneousarea(Figure3d,e).Thus,themembranesituated betweenthetergiteTGandsterniteSTofanabdominalsegmentbearsintheimagotwoevident structures–thespiraclesiandtheabdominalprocessap(Figure3e). Comparisonwithvestigesoflarvalgills Euphaeidae and Polythoridae are only recent Odonata with supplementary larval gills running downthesidesoftheabdomen(Lok&Orr,2009).InEpallagefatime(Zygoptera,Euphaeidae), thegillisamovablegrub-likehollowappendagewithintrinsictracheationandonemusclecon- nectingthegillbasewiththerespectivetergite;thusthegillsaremovableandfunctionallyloaded appendages.Thegillsareattachedtothepleuralregionofabdominalsegments2–8bilaterally, just below the tergite and behind the spiracle vestige (Kluge, 2000). My investigation of adult Epallageshownthatgillsdisappeartoasmallvestigeintheformofamembranousconvexityat theventroposterioredgeoftergites2–8(Figure2a).IfcomparedwiththegillvestigesinEpal- lage,examinedapareasarulemoredevelopedstructures,whichbearhairs,sclerotizations,and, asarule,exhibitadefiniteshape.Topographically,apandgillvestigesinEpallagearesimilar. Discussion Pairedextra-abdominalprocesses(ap)arefoundinthepleuralregionofthesixthtoninth(rarely fifthtoninth)abdominalsegmentsinseveraladultAnisopteraspecies.Mystudyoffinalinstar larvaeshowthattheimaginalaparedevelopingunderthecuticleoflarvallateralspines,which occupytheposterolateralareasofthelarvaltergite.Thisfactleadstotheassertionthatthepleural region in adult abdominal segments of examined Odonata species corresponds topographically tothelarvalpleuriteandtoapartofthelarvaltergite.Consequently,theimaginalpleuralregion intheabdomenofAeshnidaeisofacomplexpleuro-tergalorigin(cf.Matushkina,2008). WhyapareappearinginadultAnisoptera,andwhethertheyareofanyfunctionalimportance, isanobscurematter.Larvalaeshniddragonfliesareaquaticpredators.Experimentsprovideevi- dencethatspinesofananisopteranlarvamayserveasadefencetoolagainstpredatorslikefishes (Johansson&Samuelson,1994;Mikolajewski&Johansson,2004).However,spinesmightalso beadaptationstootherfactors,suchaskeepingthelarvaefromsinkingintothebottomsubstrate (Corbet,1957)orhelpingthemtoclingtovegetation(Aguiar,1989).InOdonata,metamorphosis leadstodrasticmorphologicalmodificationsassociatedwiththehabitatshiftfromaquaticlarvae Firstrecordofextra-abdominalprocessesinadultOdonata 59 (a) (b) (c) (d) (e) Figure 3. VentralaspectsoftheeighthandninthabdominalsegmentinAeshnidae,righthalfshownonly,(a–c)light microscopy,(d–e)diagrammatically.(a)TheeighthabdominalsegmentoffinallarvaofAeshnacyaneaanditsimaginal cuticleunderlyingthelarvalcuticle(b);(c)imaginalcuticleunderlyingthelarvalcuticleoftheninthabdominalsegment offinallarvaofAeshnacyanea;(d),(e)ventralaspectsoftheeighthsegmentinfinallarva(d)andfemale(e)ofAnax imperator.Segmentwallin(e)isquasibentventrallyandstraightened.ap8,“ap8”,appendage-likeprocessandlateral spine on tergite to which it is assumedly homologous, respectively; b8, postspiracular apodeme of eighth segment; PLa8,PLp8,anteriorandposteriorpartsofpleurite,respectively;“ST8”,sternalsclerotization(forargumentsforits complexoriginseeKlass2008);si8,“si8”,spiraclesclerotizationanditsanlageonlarvalpleurite,respectively;TG8, eighthtergite.Greyscalesin(d)and(e)indicatedifferentdegreeofsclerotization.Doublearrowindicateslateral(l)and posterior(p)directions.Scalebars:(a–c)0.5mm;(d)and(e)0.001mm. to aerial adults (e.g. Leipelt, Suhling, & Gorb, 2010). Specifically in Aeshnidae, the abdomen becomes longer and slender, its tergites are enlarged and swollen and sternites are narrowed (Asahina,1954).Whedon(1929)assertsthatchangeoftheshapeoftheabdomeninOdonatais apparentlycausedbychangeofrespirationandlocomotionmode.Inaeshnidlarvae,theabdomen ventilationmovementsconsistofarhythmicraisingandloweringoftheposteriorabdominalven- ters(whichincludethesterniteandpleuralregions)againsttheterga;whereinthewholepleural regionremainsexposedduringtheventilationcycle(Mill&Pickard,1972).Incontrast,theven- tilationmovementsintheadultabdomenconsistofalternatepullingofthenarrowsternitedeep inside the swollen tergite and subsequent protrusion of the sternite to its starting position; the 60 N.A.Matushkina whole pleural region, including the area of ap, remains mostly hidden within the segment all the time. Therefore, ap remains deep in a slit between the abdominal tergite and sternite. This positionmakesunlikelyanysuggestioneitherontheexteroceptiveordefencefunctionofap. Onthebasisoftheavailabledata,Iaminclinedtoconsiderthattheaparerathervestigesof firmlarvalspinesthatareretainedinanimago.Indeed,thebodyofthefreshlyemergedimago in Odonata has several non-functional larval traits, especially in the musculature (Matushkina, 2008; Whedon, 1929), which may persist in the mature imago. However, virtually no infor- mation has previously been available on the changes undergone by peculiar outgrowths of the larval body wall, like prongs or spurs, in the metamorphosis to an imago. Further evidence in favourofresidualnon-functionaloriginofapislackofanytracesofinnervationandmuscula- tureassociatedwithap,andessentialvariabilityoftheshapeanddegreeofsclerotizationofap amongspecimensofthesamespecies.Apeculiarlystructuredapicalsurfaceofaprecordedfrom Epiaeschnaherosremainsobscure. Ifmyspeculationaboutthenon-functionaloriginofthefoundprocessesistrue,itisunclear whyAeshnidaeexhibitmuchmoredevelopedvestigesoflarvalspines(ap)ascomparedtothe other dragonfly lineages studied, and as compared to diminutive vestiges of the larval gills in Euphaeidae.Perhapsthesizeanddegreeofsclerotizationmayaffectthedisappearanceofcutic- ularstructuresduringmetamorphosisinsomespecificway.Ifso,verylargedragonfliessuchas Aeshnidaehaveabetterchancetoretainfirm,well-sclerotizedlarvalcuticularstructuresinthe imago.Theseissuesrequirefurtherinvestigationinordertodeepenourfundamentalknowledge abouttheinsectbodymodificationinthemetamorphosisandthemechanismoftheheterochronic developmentintheinsects. Acknowledgements IwouldliketothankAlexMartynov,SergejMartynov,AlexGumovsky,FrankLouisCarle,NataliavonEllenriederand R.W.Garrisonfordonationsofspecimens,andRoyJ.BeckemeyerandMikeMayforlinguistichelp.Iamgratefulto SebastianBüsseandananonymousreviewerforcriticalreviewingofthemanuscript. Funding TheresearchwaspartlysupportedbytheDAADunderGrant322/or-eandbytheSenckenbergInstitutionunderGrant forInvitedResearches2015. References Aguiar,S.D.S.(1989).Whatisthefunctionofthedorsalhooksandlateralspinesinlarvaldragonflies(Anisoptera)? Notulae Odonatologicae, 3, 43–44. Retrieved from: http://natuurtijdschriften.nl/download?type=document& docid=593430. Asahina,S.(1954).AmorphologicalstudyofarelictdragonflyEpiophlebiasuperstesSelys(Odonata,Anisozygoptera). Tokyo:JapanSocietyforthePromotionofScience. Bitsch,J.(2012).Thecontroversialoriginoftheabdominalappendage-likeprocessesinimmatureinsects:Aretheytrue segmentalappendagesorsecondaryoutgrowths?.JournalofMorphology,273,919–931.doi:10.1002/jmor.20031. Bitsch, C., & Bitsch, J. (2004). Phylogenetic relationships of basal hexapods among mandibulate arthropods: a cladisticanalysisbasedoncomparativemorphologicalcharacters.ZoologicaScripta,33,511–550.doi:10.1111/ j.0300-3256.2004.00162.x. Boxshall,G.A.(2004).Theevolutionofarthropodlimbs.BiologicalReviews,79,253–300.doi:10.1017/S1464793103 006274. Boxshall,G.A.(2013).Arthropodlimbsandtheirdevelopment.InA.Minelli,G.Boxshall,&G.Fusco(Eds.),Arthropod biologyandevolution:Molecules,development,morphology(pp.241–264).Springer:Berlin.doi:10.1007/978-3- 642-36160-9. Corbet, P. S. (1957). Larvae of east African Odonata. 6–8. Entomologist, 90, 28–34. Retrieved from: http://www.firi.go.ug/african_reprints.php?a=view&recid=1192. Giorgianni, M., & Patel, N. H. (2005). Conquering land, air and water: the evolution and development of arthro- podappendages.InD.E.G.Briggs(Ed.),Evolvingformandfunction:Fossilsanddevelopment(pp.159–180). Firstrecordofextra-abdominalprocessesinadultOdonata 61 New Haven: Peabody Museum of Natural History, Yale University. Retrieved from: https://www.researchgate. net/publication/242577337_Conquering_Land_Air_and_Water_The_Evolution_and_Development_of_Arthropod_ Appendages. Johansson, F., & Samuelson, L. (1994). Fish-induced variation in abdominal spine length of Leucorrhinia dubia (Odonata)larvae?Oecologia,100(1–2),74–79.doi:10.1007/BF00317132. Klass,K.-D.(2008).Thefemaleabdomenofovipositor-bearingOdonata(Insecta:Pterygota).ArthropodSystematicsand Phylogeny,66,45–142.Retrievedfrom:http://www.senckenberg.de/files/content/forschung/publikationen/arthropod systematics/asp_66_1/66_1_klass_45-142.pdf. Klass,K.-D.,&Matushkina,N.A.(2012).TheexoskeletonofthefemalegenitalicregioninPetrobiellustakunagae (Insecta:Archaeognatha):insect-wideterminology,homologies,andfunctionalinterpretations.ArthropodStructure andDevelopment,41,575–591.doi:10.1016/j.asd.2012.06.003. Kluge,N.J.(1989).[Theproblemofthehomologyofthetrachealgillsandparanotalprocessesofthemayflylarvaeand wingsoftheinsectswithreferencetothetaxonomyandphylogenyoftheorderEphemeroptera].Chteniyapamyati Kholodkovskogo[LecturesinMemorianofN.A.Kholodkovsky],41,48–77(InRussian). Kluge,N.J.(2000).[Modernsystematicsofinsects.PartI.Principlesofsystematicsoflivingorganismsandgeneral systemofinsectswithclassificationofprimarywinglessandpalepterousinsects].S-Petersburg:Lan’.(inRussian). Leipelt,K.G.,Suhling,F.,&Gorb,S.N.(2010).Ontogeneticshiftsinfunctionalmorphologyofdragonflylegs(Odonata: Anisoptera).Zoology,113,317–325.doi:10.1016/j.zool.2010.05.004. Lok,A.F.S.L.,&OrrA.G.(2009).ThebiologyofEuphaeaimparSelys(Odonata:Euphaeidae)inSingapore.Nature inSingapore,2,135–140.Retrievedfrom:http://lkcnhm.nus.edu.sg/nis/bulletin2009/2009nis135-140.pdf. Matushkina, N. [A.] (2008). Skeletomuscular development of genital segments in the dragonfly Anax imperator (Odonata,Aeshnidae)duringmetamorphosisanditsimplicationsfortheevolutionarymorphologyoftheinsect ovipositor.ArthropodStructureandDevelopment,37,321–332.doi:10.1016/j.asd.2007.11.006. Mikolajewski, D. J., & Johansson, F. (2004). Morphological and behavioural defenses in dragonfly larvae: trait compensationandcospecialization.BehavioralEcology,15,614–620.doi:10.1093/beheco/arh061. Mill,P.J.,&Pickard,R.S.(1972).Analvalvemovementandnormalventilationinaeshniddragonflylarvae.Journalof ExperimentalBiology,56,537–543.Retrievedfrom:http://jeb.biologists.org/content/56/2/537.full.pdf+html. Suzuki,Y.,&Palopoli,M.F.(2001).Evolutionofinsectabdominalappendages:areprolegshomologousorconvergent traits?.DevelopmentGenesandEvolution,211,486–492.doi:10.1007/s00427-001-0182-3. Whedon,A.D.(1929).MuscularreorganizationintheOdonataduringmetamorphosis.BiologicalBulletin,56,177–192. doi:10.2307/1536935. Williams,T.A.,&Nagy,L.M.(2001).Developmentalmodularityandtheevolutionarydiversificationofarthropod limbs.JournalofExperimentalZoology,291,241–257.doi:10.1002/jez.1101.