ebook img

First-principles study of the exchange interactions and Curie temperature in Heusler alloys PDF

116 Pages·2006·1.95 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview First-principles study of the exchange interactions and Curie temperature in Heusler alloys

First-principles study of the exchange interactions and Curie temperature in Heusler alloys Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Mathematisch-Naturwissenschaftlich-Technischen Fakult¨at (mathematisch-naturwissenschaftlicher Bereich) der Martin-Luther-Universit¨at Halle-Wittenberg von Herrn Ersoy S¸a¸sıo˜glu geb. am: 15 December 1975 in Antalya, Turkey Gutachter: 1. PD. Dr. Leonid Sandratskii 2. Prof. Dr. Peter Dederichs 3. Prof. Dr. Olle Eriksson Halle (Saale), 25. April 2006 urn:nbn:de:gbv:3-000011020 [http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-000011020] List of publications Papers included in the thesis • First-principles calculation of the inter sublattice exchange interactions and Curie temperatures of the full Heusler alloys Ni MnX (X=Ga, In, Sn, Sb) 2 E. S¸a¸sıo˜glu, L. M. Sandratskii and P. Bruno Phys. Rev. B 70 024427 (2004) • First-principles study of exchange interactions and Curie temperatures of half-metallic ferrimagnetic full Heusler alloys Mn VZ (Z=Al, Ge) 2 E. S¸a¸sıo˜glu, L. M. Sandratskii and P. Bruno J. Phys.: Condens. Matter 17 995 (2005) • Pressure dependence of the Curie temperature in Ni MnSn Heusler alloy: 2 A first-principles study E. S¸a¸sıo˜glu, L. M. Sandratskii and P. Bruno Phys. Rev. B 71 214412 (2005) • Above-room-temperatureferromagnetisminhalf-metallicHeuslercompounds NiCrP, NiCrSe, NiCrTe and NiVAs: A first-principles study E. S¸a¸sıo˜glu, L. M. Sandratskii and P. Bruno J. Appl. Phys. 98 063523 (2005) • Exchange interactions and temperature dependence of the magnetization in half-metallic Heusler alloys E. S¸a¸sıo˜glu, L. M. Sandratskii, P. Bruno and I. Galanakis Phys. Rev. B 72 184415 (2005) • Magnetic phase diagram of the semi-Heusler alloys from first principles E. S¸a¸sıo˜glu, L. M. Sandratskii and P. Bruno Appl. Phys. Lett. 89 222508 (2006) • RoleoftheconductionelectronsinmediatingexchangeinteractionsinHeusler alloys E. S¸a¸sıo˜glu, L. M. Sandratskii and P. Bruno In preparation to appear in Phys. Rev. B Papers not included in the thesis • Magnetic exchange coupling and Curie temperature of Ni MnSb (x=0, (1+x) 0.25, 0.5, 0.75, 1) from first principles E. S¸a¸sıo˜glu, L. M. Sandratskii and P. Bruno J. Mag. Mag. Mater., 290-291 385 (2005) • Stability of ferromagnetism in the half-metallic pnictides and similar com- pounds: A first-principles study E. S¸a¸sıo˜glu, I. Galanakis, L. M. Sandratskii and P. Bruno J. Phys.: Condens. Matt. 17 3915 (2005) • Exchange interactions and N´eel temperature of a Fe monolayer on W(001): A first-principles study L. M. Sandratskii, E. S¸a¸sıo˜glu and P. Bruno Phys. Rev. B 73 014430 (2006) • First-principles investigation of magnetism of U films and U(001) /Fe(110) 1 3 multilayers A. Laref, E. S¸a¸sıo˜glu and L. M. Sandratskii J. Phys.: Condens. Matt. 17 4177 (2006) • Search for half-metallic ferrimagnetism in V-based Heusler alloys Mn VZ 2 (Z=Al, Ga, In, Si, Ge, Sn) K. O¨zdo˜gan, I. Galanakis, E. S¸a¸sıo˜glu, and B. Akta¸s J. Phys.: Condens. Matt. 18 2905 (2006) • Effect of doping disorder on the half metallicity of full Heusler alloys I. Galanakis, K. O¨zdo˜gan, B. Akta¸s, and E. S¸a¸sıo˜glu Appl. Phys. Lett. 89 042502 (2006) • Defects in CrAs and related compounds as a route to half-metallic ferrimag- netism I. Galanakis, K. O¨zdo˜gan, E. S¸a¸sıo˜glu, and B. Akta¸s Phys. Rev. B 74 140408(R) (2006) • Doping and disorder in the Co MnAl and Co MnGa half-metallic Heusler 2 2 alloys K. O¨zdo˜gan, E. S¸a¸sıo˜glu, B. Akta¸s, and I. Galanakis Phys. Rev. B 74 172412 (2006) Contents Acknowledgments iv Abstract v Introduction 1 I Methods and Materials 4 1 Density Functional Theory of Magnetic Systems 5 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Thomas-Fermi model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Hohenberg-Kohn theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Kohn-Sham equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Approximations for E [n] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 xc 1.5.1 The local density approximation (LDA) . . . . . . . . . . . . . . . . . 8 1.5.2 The generalized gradient approximation (GGA) . . . . . . . . . . . . . 9 1.6 Extension to spin-polarized systems . . . . . . . . . . . . . . . . . . . . . . . 9 1.7 Non-collinear magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.7.1 Spin spirals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.7.2 Generalized Bloch theorem . . . . . . . . . . . . . . . . . . . . . . . . 13 1.8 Augmented spherical wave (ASW) method . . . . . . . . . . . . . . . . . . . . 14 2 First-Principles Calculation of Exchange Interactions 16 2.1 Models of magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1 Classical Heisenberg model for itinerant electrons . . . . . . . . . . . . 18 2.2 Origin of magnetism: Exchange interactions . . . . . . . . . . . . . . . . . . . 18 2.3 First-principles calculation of the exchange interactions . . . . . . . . . . . . 21 2.3.1 Frozen-magnon method for multi-sublattice systems . . . . . . . . . . 22 3 Magnetism at Finite Temperatures 25 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Magnetic excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 i 3.3 Estimation of the Curie temperature . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.1 Mean field approximation . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.2 Random phase approximation for multi-sublattice Heisenberg model . 30 4 Heusler Alloys: Experimental and Theoretical Background 33 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.1 Martensitic phase transitions . . . . . . . . . . . . . . . . . . . . . . . 35 4.3 Magnetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3.1 Ferromagnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3.2 Antiferromagnets and ferrimagnets . . . . . . . . . . . . . . . . . . . . 37 4.3.3 Localized versus itinerant magnetism . . . . . . . . . . . . . . . . . . . 37 4.4 Band structure calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.4.1 Formation of local moments . . . . . . . . . . . . . . . . . . . . . . . . 38 4.4.2 Half-metallic ferromagnetism . . . . . . . . . . . . . . . . . . . . . . . 39 4.5 Exchange coupling: An overview . . . . . . . . . . . . . . . . . . . . . . . . . 42 II Results of Calculations 46 5 Exchange Mechanisms in Heusler Alloys 47 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 Ni MnZ (Z = Ga, In, Sn, Sb) compounds . . . . . . . . . . . . . . . . . . . . 48 2 5.3 Role of the conduction electrons in mediating exchange interactions between Mn atoms . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.1 Local moment behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.2 Indirect exchange coupling . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3.3 Conduction electron polarization and Curie temperature . . . . . . . . 61 5.3.4 3d versus 4d electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6 Magnetism of Half-Metallic Heusler Compounds 64 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.2 NiMnSb, CoMnSb, Co CrAl and Co MnSi compounds . . . . . . . . . . . . . 65 2 2 6.2.1 Effect of lattice parameter on magnetic properties . . . . . . . . . . . 66 6.2.2 Spin-wave spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.2.3 Temperature dependence of the magnetization . . . . . . . . . . . . . 73 6.3 Competing Mn-Mn exchange interactions in ferrimagnetic Mn VZ (Z = Al, Ge) compounds . . . . . . . . . . . . . . . . . . . . . . . . . 76 2 6.4 Prediction of high T in NiVAs and NiCrZ (Z = P, Se, Te) compounds . . . . 79 c 6.4.1 Frozen-magnon dispersions and exchange parameters . . . . . . . . . . 81 6.4.2 Curie temperature and half-metallicity . . . . . . . . . . . . . . . . . . 83 7 Effect of Pressure on Magnetic Properties of Heusler Alloys 85 7.1 Empirical interaction curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2 Pressure dependence of the exchange interaction and Curie temperature in Ni MnSn . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2 7.2.1 Low pressure region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.2.2 High pressure region: Metamagnetic behavior . . . . . . . . . . . . . . 90 7.3 Effect of the Mn-Ni swap on Curie temperature of Ni MnSn . . . . . . . . . . 92 2 8 Summary and Conclusions 95 Zusammenfassung 97 Bibliography 99 Acknowledgments I am most grateful to my supervisor PD. Dr. Leonid Sandratskii, for giving me the opportu- nity to do this work, for his continuous guidance and encouragement throughout my studies. He was always very helpful and motivating. I am very thankful to Prof. Dr. Patrick Bruno for his guidance through very useful discussions. Moreover, I benefited from the collaboration with Dr. Iosif Galanakis and from useful discussions with Prof. Dr. Josef Kudrnovsky´ during his stay in MPI-Halle. I would gratefully acknowledge Mr. A. Akın U¨nal and Dr. M. Perez Jigato for reading my thesis and offering helpful comments and advices. I also would like to thank my colleagues in the Theory Department of the Max-Planck- Institute of Microstructure Physics for the pleasant atmosphere and a lot of friendly discus- sions during the seminars. This work is dedicated to my family Ersoy S¸a¸sıo˜glu Halle (Saale), Germany December 22, 2005 iv Abstract This work contains the theoretical investigations of the exchange interactions and Curie tem- perature in various Heusler alloys. The calculations are performed within the parameter-free density-functional theory with the state-of-the-art ASW-method. The calculation of the exchange parameters is based on the frozen-magnon approach. The Curie temperature is es- timated within mean-field (MF) and random-phase-approximation (RPA) approaches. The obtained results are divided in three parts. In the first part, a systematic study of the both intra-sublattice and inter-sublattice exchange interactions as well as Curie temperatures for experimentally well-established Heusler alloys is presented. We focused on the microscopical mechanisms of the formation of the long range magnetic order. For Ni-based compounds Ni MnZ (Z = Ga, In, Sn, Sb) we obtain a strong dependence of the exchange interactions 2 on the Z constituent (sp-atom) despite the closeness of calculated and experimental Curie temperatures of all four compounds. The role of the sp-electrons in mediating exchange interactions between Mn atoms is further revealed by studying non-stoichiometric composi- tions of Pd- and Cu-based semi and full Heusler alloys. We found that an important factor strongly influencing the electronic properties of the Heusler alloys is the spin polarization of thesp-electrons. Weobtainedaclearrelationshipbetweenthestrengthoftheexchangeinter- action and the sp-electron spin polarization. In all considered systems the Mn-Mn exchange interaction is long-ranged and shows RKKY-type oscillations. In the second part, a detailed study of magnetism of half-metallic Heusler compounds promisingformagnetoelectronicsapplicationsispresented. Westudybothferromagneticand ferrimagnetic compounds. The role of the inter-sublattice exchange interactions in formation of the very high Curie temperature is revealed. We investigate the effect of the half-metallic gap on the stability of exchange interactions and Curie temperature. We study spin wave spectra and temperature dependence of the magnetization employing multi-sublattice Green function technique within Tyablikov decoupling scheme. We predicted new semi Heusler compounds with very high T values. C In the last part, we study the pressure dependence of electronic structure, exchange inter- actions, and Curie temperature in the ferromagnetic Heusler alloy Ni MnSn. In agreement 2 with the experiment we obtain an increase of Curie temperature from 362 K at ambient pressure to 396 K at 12 GPa. Extending the variation of the lattice parameter beyond the range studied experimentally, we obtained non-monotonic pressure dependence of the Curie v vi temperature and metamagnetic transition. We relate the theoretical dependence of T on C the lattice constant to the corresponding dependence predicted by the empirical interaction curve. The Mn-Ni atomic interchange observed experimentally is simulated to study its influence on the Curie temperature. Introduction Heusler alloys are known for more than 100 years. They are named after Friedrich Heusler, a Germanminingengineerandchemist, whodiscoveredin1903Cu-Mn-Altobeferromagnetic, although the alloy consists of non-ferromagnetic elements. Today two classes of materials are called Heusler alloys: The semi-Heusler alloys with general formula XYZ and the full-Heusler alloys with X YZ. The X and Y elements come from the transition metal group, whereas 2 the Z component is the element of the III-V group. The semi- and full-Heusler alloys are characterized by the C1 and L2 structures, respectively. These compounds exhibit very b 1 rich magnetic behavior. One finds in the same family of alloys diverse magnetic phenom- ena: itinerant and localized magnetism, antiferromagnetism, helimagnetism, or non-collinear magnetism. Recently, Heusler alloys have attracted considerable experimental and theoret- ical interest due to three unique properties that they exhibit: i) Half-metallic behavior, ii) magnetic shape memory effect and iii) inverse magnetocaloric effect. Thehalf-metallicitywasfirstpredictedbydeGrootandcollaboratorsin1983whenstudy- ing the band structure of a half-Heusler alloy NiMnSb. Then the half-metallic ferromagnets have become one of the most studied classes of materials. The existence of a gap in the minority-spin band structure leads to 100% spin polarization of the electron states at the Fermi level and makes these systems attractive for applications in the emerging field of spin- tronics. In half-metals, the creation of a fully spin-polarized current should be possible that shouldmaximizetheefficiencyofmagnetoelectronicsdevices. Besidesstrongspinpolarization of the charge carriers in the ground state, the half-metallic materials should have a compati- ble lattice structure with the industrially used zincblende semiconductors and possess a high Curie temperature to allow the applications in the devices operating at room temperature. Available experimental information shows that the Heusler alloys are promising systems also in this respect. The other properties are related to the combination of magnetic and structural features of the Heusler alloys. At low temperatures several Heusler compounds, e.g. Ni MnGa, 2 Co NbSn etc., undergo a martensitic transition from a highly symmetric cubic austenitic to 2 a low symmetry martensitic phase. In the case when the Heusler alloys are magnetic in the martensiticphase,theycanexhibitthemagneticshapememoryeffect(MSM).Inthesealloys, an external magnetic field can induce large strains when applied in the martensitic state. Shape memory alloys are promising smart materials for future technological applications. 1

Description:
7 Effect of Pressure on Magnetic Properties of Heusler Alloys. 85. 7.1 Empirical lattice translation TR and a spin rotation about z axis by an angle φ = q·Rn leave the spiral structure invariant .. erties in broad classes of ferromagnets, there are some systems like weak ferromagnet ZrZn2 which
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.