First-order virialexpansionofshort-timediffusion andsedimentation coefficients ofpermeable particles suspensions Bogdan Cichocki,1 Maria L. Ekiel-Jez˙ewska,2,∗ GerhardNa¨gele,3 and Eligiusz Wajnryb2 1InstituteofTheoreticalPhysics,FacultyofPhysics,UniversityofWarsaw, Hoz˙a69,00-681Warsaw, Poland 2InstituteofFundamentalTechnologicalResearch,PolishAcademyofSciences,Pawin´skiego5B,02-106Warsaw,Poland 3Instituteof ComplexSystems, ICS-3, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany (Dated:January25,2011) Forsuspensionsofpermeableparticles,theshort-timetranslationalandrotationalself-diffusioncoefficients, and collective diffusion and sedimentation coefficients are evaluated theoretically. An individual particle is modeledasauniformlypermeablesphereofagivenpermeability,withtheinternalsolventflowdescribedby theDebye-Bueche-Brinkman equation. The particlesareassumed tointeract non-hydrodynamically by their excluded volumes. The virial expansion of the transport properties in powers of the volume fraction is per- formeduptothetwo-particlelevel.Thefirst-ordervirialcoefficientscorrespondingtotwo-bodyhydrodynamic interactionsareevaluatedwithveryhighaccuracybytheseriesexpansionininversepowersoftheinter-particle 1 distance.Resultsareobtainedanddiscussedforawiderangeoftheratio,x,oftheparticleradiustothehydro- 1 dynamicscreeninglengthinsideapermeablesphere. Itisshownthatforx >∼ 10,thevirialcoefficientsofthe 0 transportpropertiesarewell-approximatedbythehydrodynamicradius(annulus)modeldevelopedbyusearlier 2 fortheeffectiveviscosityofporous-particlesuspensions. n a PACSnumbers:82.70.Dd,66.10.cg,67.10.Jn J 3 2 I. INTRODUCTION radiustothehydrodynamicpenetrationdepthinsideaperme- able sphere. Large (low) values of x correspond to weakly ] (strongly)permeableparticles. Whilethemodelofuniformly t One of the theoretical methods to analyze transport prop- f permeablehardspheresignoresaspecificintra-particlestruc- o erties in suspensions of interacting colloidal particles is the ture,itisgenericinthesensethatthehydrodynamicstructure s virial expansion in terms of the particle volume fraction φ. . of more complex porous particles can be approximately ac- t Forsuspensionsofnon-permeablehardsphereswithstickhy- a counted for in terms of a mean permeability. In our related drodynamicboundaryconditions,virialexpansionresultsfor m previous publications, using a hydrodynamicmultipole sim- short-time properties are known to high numerical precision - up to the three-particlelevel, i.e., to quadraticorderin φ for ulation method of a very high accuracy[21], encodedin the d n diffusion and sedimentation coefficients [1, 2], and to third HYDROMULTIPOLEprogrampackage[1],wehavecalculated theshort-timetranslationaldiffusionproperties[17, 18], and o order in φ for the effective viscosity [3]. The concentration thehigh-frequencyviscosity[19,20]ofthepermeablespheres c range of applicability of these hard-sphere virial expansion [ results in comparison to simulation data has been discussed model, as functionsof φ and x. These results coverthe full 1 in[4]. Ourknowledgeonvirialexpansioncoefficientsofcol- range of permeabilities, with volume fractions extending up totheliquid-solidtransition. v loidaltransportpropertiesislessdevelopedwhensuspensions 6 ofsolvent-permeableparticlesareconsidered.Thetheoretical While the simulation results are importantfor the general 9 descriptionof their dynamicsis more complicatedsince one understanding of permeability effects in concentrated sys- 3 needstoaccountforthesolventflowalsoinsidetheparticles. tems,forpracticaluseinexperimentaldataevaluationandas 4 Permeableparticlesystemsarefrequentlyencounteredinsoft inputin long-timetheories, virialexpansionresultsbasedon . 1 matter science. Prominent examples of practical relevance arigoroustheoreticalcalculationarestillstronglyondemand. 0 which are the subject of ongoing research, are dendrimers Infact,theknowledgeoftheleading-ordervirialcoefficients 1 [5, 6], microgel particles [7–9], a large variety of core-shell canbe a goodstartingpointin derivingapproximateexpres- 1 particles with a dry core and an outer porous layer [10–14], sionsfortransportproperties,whichmaybeapplicableatcon- : v fractalaggregates[15],andstar-likepolymersoflowerfunc- centrationsmuchhigher than those where the original(trun- Xi tionality[16]. cated)virialexpansionresultisuseful. Anexampleincaseis providedin our recent derivation[20] of a generalizedSaitoˆ Inaseriesofrecentarticles[17–20],wehaveexploredthe r a genericeffectofsolventpermeabilityontheshort-timetrans- expression for the effective high-frequency viscosity η∞ of permeable spheres, based on the second-orderconcentration portusingthemodelofuniformlypermeablecolloidalspheres expansionresult,i.e. aHugginscoefficientcalculation,ofthis with excluded volume interactions. This simple model is property. specifiedbytwoparametersonly,namelytheparticlevolume fraction φ = (4π/3)na3, where n is the number concentra- In[19],wehaveperformedvirialexpansioncalculationsfor tionandaistheparticleradius,andtheratioxoftheparticle η∞.Wehaveinvestigatedthereinasimplifyinghydrodynamic radius model (HRM), where a uniformly permeable sphere of radius a is described by a spherical annulus particle with an inner hydrodynamic radius a (x) < a, and unchanged eff ∗Electronicaddress:[email protected] excluded-volumeradiusa. Inthisannulusmodel(HRM),the 2 Huggins coefficient describing two-body viscosity contribu- In this paper, the two-particle translational-translationalmo- tions has been evaluated and shown to be in a remarkably bility matrices µtt(r ,r ) are evaluated using the multipole ij 1 2 good agreement with the precise numerical data for porous method of solving the Stokes an DBB equations [21]. The particles, characterizedbya widerangeofpermeabilitiesre- clusterexpansionoftheabovemobilitymatricesreads, alizedinexperimentalsystems. Inthe presentarticle, the aforementionedtheoreticalwork µtt(r ,r )=µtδ 1+µtt(2)(r), (6) ij 1 2 0 ij ij onthevirialexpansionofthehigh-frequencyviscosityisgen- eralized to short-time diffusion properties. In Sec. II, the wherer=r2−r1 and virial expansion is performed for the translational and rota- 1 stieodniamlesnetlaf-tidoinffucosieofnficcioeenftfiKci,eanntsdDthteaansdsoDcira,terdescpoelcleticvteivlye,dthife- µt0 = 4πη0A10 (7) fusioncoefficientD =KDt/S(0).Here,S(0)isthesmall- C 0 isthesingleporous-particletranslationalmobility. HereA wavenumberlimitofthestaticstructurefactor,andDt isthe 10 0 isasingleporous-particlescatteringcoefficient[26],givenex- single-particle translationaldiffusioncoefficient. In Sec. III, plicitlyinAppendixA. Foranon-permeablehardspherewith weprovidehighlyaccuratenumericalvaluesforthefirst-order stickboundaryconditions,Ahs =3a/2. (i.e.,two-particle)virialcoefficients,λ (x),λ (x),λ (x)and 10 t r C The single particle scattering coefficients A , with l = λ (x), ofD ,D ,D andK,respectively,inthefullrange lσ K t r C 1,2,3,4,... and σ = 1,2,3 [26], are essential to perform ofpermeabilities. InSec.IV,wealsorecalculatethesevirial the multipole expansion. They determine the corresponding coefficientsapproximatelyonthebasisofthesimplifyingan- multipoles of the hydrodynamic force density on a particle nulusmodel(HRM).InSec.V,weconcludethatintherange immersedinanambientflow;examplesareEqs.(7)and(24). x>∼10typicalofmanypermeableparticlesystems,thevirial ThesamecoefficientsA specifyalsothecorrespondingmul- coefficientsarewellapproximatedbytheannulusmodel. lσ tipolesofthefluidvelocity,reflected(scattered)byaparticle immersedinagivenambientflow.ThisiswhyA arecalled lσ “scattering coefficients”. In the multipole approach, differ- II. THEORY encesin the internalstructureof particles(e.g. solid, liquid, gas,porous,core-shell,stick-slip),arefullyaccountedbydif- We consider a suspension made of a fluid with shear vis- ferentscatteringcoefficients. Theotherpartsofthemultipole cosityη andidenticalporousparticlesofradiusa. Thefluid 0 algorithmneednottobechanged. Thescatteringcoefficients flowischaracterizedbyReynoldsnumberRe<< 1. Outside are the matrix elements of two single-particle friction oper- the particles, the fluid velocity v and pressure p satisfy the ators, Z and Zˆ , which determine the hydrodynamic force Stokesequations[22,23], 0 0 densityexertedbyagivenambientflowona motionlessand η ∇2v(r)−∇p(r) = 0 afreelymovingparticle,respectively. 0 ∇·v(r) = 0, (1) Inthemultipoleexpansionmethod,thetwo-particlemobil- ityµ(2)(1,2)(e.g.translationalone,asinEq.(6),orrotational and inside the particles, the Debye-Bu¨che-Brinkman(DBB) one,asinEq.(23))isexpressedintermsofthesingle-particle equations[24,25], friction operators, Z (i) and Zˆ (i), with i = 1,2, and the 0 0 η ∇2v(r)−η κ2[v(r)−u (r)]−∇p(r) = 0 Green operator G(1,2). The later relates the flow outgoing 0 0 i fromparticle2andincomingonparticle1.Wecanwriteµ(2) ∇·v(r) = 0, (2) asaninfinitescatteringseries, whereκ−1isthehydrodynamicpenetrationdepth.Theskele- ton of the particle i, centered at ri, moves rigidly with the µ(2) = µ0Z0(1+GZˆ0)−1GZ0µ0 localvelocityui(r)=Ui+ωi×(r−ri),determinedbythe = µ Z GZ µ −µ Z GZˆ GZ µ +.... (8) translational and rotational velocities U and ω of the par- 0 0 0 0 0 0 0 0 0 i i ticle i, respectively. The fluid velocity and stress tensor are Since the multipole matrix elements of the Green tensor G continuousacross a particle surface. The effectof the parti- scaleasinversepowersoftheinterparticledistancer,Eq.(8) cleporosityisthereforedescribedbytheratioxoftheparti- correspondsto a power series in 1/r. Truncatingthe expan- cleradiusatothehydrodynamicscreeninglengthκ−1 ofthe sionat order1/r1000, we obtaina veryhighprecisionof the porousmaterialinsidetheparticle,i.e. mobility calculation, actually much higher than needed for anypracticalapplications. x = κa. (3) In the presentwork, we investigatethe short-timedynam- OwingtolinearityoftheStokesandDBBequationsandthe ics,attimescalest<<a2/Dt,where 0 boundaryconditions,theparticlevelocityU dependslinearly i ontheexternalforcesFj exertedonaparticlej. Inparticular, D0t =kBTµt0 (9) fortwointeractingsphericalparticles, 1,2, intheabsenceof externaltorquesandflows, is the single-particle translational diffusion coefficient, with theBoltzmannconstantk andtemperatureT. Ontheshort- U1 = µt1t1(r1,r2)·F1+µt1t2(r1,r2)·F2 (4) timescale,thesystemisdBescribedbytheequilibriumparticle U = µtt(r ,r )·F +µtt(r ,r )·F . (5) distribution [27]. In the further analysis, we will need only 2 21 1 2 1 22 1 2 2 3 the small-concentration limit g (r) of the pair distribution Forthenon-overlappingspheres[27], 0 function, where r is the interparticle distance. For particle- particledirectinteractionsdescribedbyapairpotentialV(r), S(0)=1−8φ+O(φ2). (21) thispairdistributionisg (r) = exp(−V(r)/k T). Fornon- 0 B Inthiscase, overlappingspheresofradiusa, 0 for r ≤2a, λC =λK +8. (22) g (r) = (10) 0 1 for r >2a. (cid:26) Therelation(22)followsfromEqs.(14),(19)and(20). We proceed by analyzing the short-time rotational self- Thefirst-ordertermsinthevirialexpansionoftheshort-time diffusion coefficient. In the absence of external forces and transport coefficients are obtained by averaging the corre- flows,thetwo-particlerotational-rotationalmobilitymatrices sponding two-particle mobility elements. As the result, the virialcoefficientsareobtainedasintegrals,whichinvolvethe µrijr(r1,r2)satisfytherelationanalogicaltoEqs.(4)-(5),with thetranslationalvelocitiesreplacedbytherotationalones,and mobilityelementsandg (r). 0 the forces replaced by the torques. The two-particle cluster The first-order virial expansion of the short-time transla- expansionnowreads, tionalself-diffusioncoefficienthastheform, D =Dt(1+λ φ+O(φ2)). (11) µrr(r ,r )=µrδ 1+µrr(2)(r), (23) t 0 t ij 1 2 0 ij ij Thecoefficientλtisgivenbytherelation[28], with +∞ 1 λt =8 g0(R)Jt(R)R2dR, (12) µr0 = 8πη A . (24) Z1 0 11 withR=r/2aand The scattering coefficient A11 for a porous particle [26] is giveninAppendixA. Foranon-permeablehardspherewith Jt(R)= µ1tTrµt1t1(2)(r). (13) theTshteicvkibrioaulnedxaprayncsioonndoitfiotnhse,rAoh1tas1ti=onaa3l.self-diffusioncoeffi- 0 cientis Here, Tr denotes the trace operation. For the sedimentation coefficient,oneobtains, D =Dr(1+λ φ+...), (25) r 0 r K =1+λ φ+... (14) K where where Dr =k Tµr (26) 0 B 0 2 8 +∞ λK = 5a3A12+ aA10 [g0(R)−1]RdR (15) and +∞ Z0 +∞ +8 g0(R)JK(R)R2dR, (16) λr =8 g0(R)Jr(R)R2dR, (27) Z1 Z1 and with 1 1 J (R)= Tr µtt(2)(r)+µtt(2)(r)−T (r) . (17) J (R)= Trµrr(2)(r). (28) K µt 11 12 0 r µr 11 0 0 h i Intheaboveexpression, 1+rr III. RESULTS T (r)= , (18) 0 8πη r 0 Toevaluatethefirstordervirialcoefficientsλ=λ ,λ ,λ , istheOseentensorandr=r/r. bb wecalculatetwo-particlemobilitymatrixelements,tperKformr- ThescatteringcoefficientA12 fora porousparticle[26] is ingaseriesexpansioninpowersof1/ruptotheorder1000, given explicitly in Appendix A. For a non-permeable hard asdescribedinSec.II. Integrationwithrespecttotheparticle b spherewiththestickboundaryconditions,Ahs =5a3/2. positionshasbeenperformedanalyticallytermbyterm,using 12 Thecollectivediffusioncoefficientisgivenby theexpressionsgivenintheprevioussection. Thevirialcoef- ficientsλhavebeenevaluatedforawiderangeofx. Selected D =DtK/S(0), (19) C 0 resultsarelistedinTableI. Alldisplayeddigitsaresignificant. (Moredataareavailableonrequest.) where S(0)is the zero-wavenumberlimit of the static struc- In Fig. 1, the first order viral expansion of the short-time turefactor,S(0)=limq→0S(q). Thefirst-ordervirialexpan- translationalself-diffusioncoefficientofaporous-particlesus- sionofEq. (19)hastheform, pensioniscomparedwiththeaccuratesimulationresultsper- D = Dt(1+λ φ+...). (20) formedinRef.[17]forvolumefractionsφ ≤ 0.45. Thefirst C 0 C 4 spheres. For uniformly porous particles, the boundary TABLE I: First virial coefficients λt, λK and λr for the short- collocation method was applied by Chen and Cai [30] time translational self-diffusion, sedimentation and rotational self- to evaluate λ = −3.46, −5.50, −6.23, −6.44 for diffusion,respectively. K x2 = 10α, with α = 1,2,3,4, respectively. Com- x λ λ λ t K r paring their results with our very accurate values, λ = K 3 -0.2497 -3.4451 -0.03257 −3.5723, −5.5480, −6.2504, −6.4563, we conclude that 4 -0.4159 -4.1066 -0.06336 theuncertaintyoftheirresultsisdecreasingfrom3%atα=1 to0.3%atα = 4. Theaccuracyoftheboundarycollocation 5 -0.5692 -4.5539 -0.09682 methodisworseatsmallervaluesofx,i.e. forlargerperme- 6 -0.7021 -4.8722 -0.12956 abilities. 7 -0.8149 -5.1084 -0.16012 In Figs. 2-4, the first-order virial coefficients λ are plot- 8 -0.9102 -5.2898 -0.18802 ted versus the porosity parameter 1/x, for 1/x ≤ 0.1, i.e. 9 -0.9909 -5.4328 -0.21327 for x ≥ 10. For 1/x = 0, i.e. for x = ∞, the limit 10 -1.0598 -5.5480 -0.23606 of a non-permeable hard sphere with radius a is recovered, 11 -1.1190 -5.6426 -0.25662 λhs = λ(∞). AsshowninFig.2,foralowpermeability,the 13 -1.2151 -5.7884 -0.29208 16 -1.3202 -5.9380 -0.33426 −4.5 18 -1.3730 -6.0095 -0.35692 20 -1.4161 -6.0662 -0.37628 −5 30 -1.5499 -6.2335 -0.44202 40 -1.6190 -6.3149 -0.48007 50 -1.6610 -6.3628 -0.50497 −5.5 65 -1.7001 -6.4064 -0.52959 K λ 100 -1.7460 -6.4563 -0.56075 −6 ∞ -1.8315 -6.5464 -0.63054 −6.5 1 −7 0 0.02 0.04 0.06 0.08 0.1 0.8 1/x FIG. 2: Two-particle sedimentation virial coefficient λK(x). Our tD00.6 preciseresultsforporousparticles(solidline)arewell-approximated D/t bytheannulusmodel(dashedline). x=5 coefficient λ ≈ λhs + 10/x is approximately a linear K K 0.4 x=10 function of 1/x. The coefficients λ and λ as functions of t r x=30 1/xareshowninFigs.3and4. x=∞ 0.2 0.05 0.15 0.25 0.35 0.45 φ FIG.1: Translational self-diffusioncoefficient Dt forasuspension ofporousparticles. Symbolsconnectedbysplines(solidlines): ac- curatesimulationresultsfromRef.[17]. Dashedstraightlines:first- ordervirialexpansioncalculatedinthiswork. ordervirialexpansion,seeEq.(11),canbeusedasanaccurate approximationofD inaverywiderangeofvolumefractions, t evenforrelativelylargevaluesofx(i.e. lowpermeabilities). In contrast, values of the sedimentation coefficient K differ significantly from the first-order virial estimation al- ready at rather small volume fractions, see Ref. [17]. Our values of λ (∞) reproduce with a higher accuracy K the classic Batchelor’s result [29] for non-permeable hard 5 0 ThemethodusedtodetermineλAisdescribedinAppendixB. ThecalculatedvaluesarelistedinTableII. −0.5 TABLE II: First-order virial coefficients λAt , λAK and λAr for the short-time translational self-diffusion, sedimentation and rotational self-diffusion,respectively,forasuspensionoftheannulusparticles. λt −1 ǫ λAt λAK λAr 0.00 -1.8315 -6.5464 -0.63055 0.01 -1.7523 -6.4601 -0.56666 −1.5 0.02 -1.6793 -6.3769 -0.51671 0.03 -1.6109 -6.2962 -0.47417 0.04 -1.5466 -6.2179 -0.43699 −2 0.05 -1.4860 -6.1419 -0.40402 0 0.02 0.04 0.06 0.08 0.1 1/x 0.06 -1.4286 -6.0680 -0.37451 0.07 -1.3743 -5.9962 -0.34791 FIG. 3: Two-particle translational self-diffusion virial coefficient 0.08 -1.3228 -5.9263 -0.32381 λt(x). Ourpreciseresultsforporousparticles(solidline)arewell- 0.09 -1.2739 -5.8582 -0.30189 approximatedbytheannulusmodel(dashedline). 0.10 -1.2274 -5.7918 -0.28187 0.11 -1.1832 -5.7272 -0.26354 0 0.13 -1.1008 -5.6027 -0.23122 0.18 -0.9253 -5.3166 -0.16974 −0.1 0.24 -0.7595 -5.0135 -0.12034 0.31 -0.6111 -4.7051 -0.08296 −0.2 0.45 -0.4093 -4.1986 -0.04242 −0.3 0.66 -0.2401 -3.6278 -0.01775 λr −0.4 Now we are going to comparethe first-order virial coeffi- cients,calculatedintheprevioussectionforporousparticles, −0.5 withthecorrespondingresults,obtainedinthissectionforthe annulus model, called also the hydrodynamic radius model −0.6 (HRM).AsimilarcomparisonhasbeendoneinRef.[19]for the effective viscosity. The key concept in this procedure is 0 0.02 0.04 0.06 0.08 0.1 thehydrodynamicradiusofaporousparticle. Forthetransla- 1/x tionaldiffusion(self-diffusionandsedimentation),thehydro- dynamicradiusat isobtainedfromthesingle-particletrans- eff FIG. 4: Two-particle rotational self-diffusion virial coefficient lationaldiffusioncoefficient,withtheuseoftherelation, λr(x). Ourpreciseresultsforporousparticles(solidline)arewell- approximatedbytheannulusmodel(dashedline). k T Dt = B . (30) 0 6πη at 0 eff IV. ANNULUSMODEL The dependence of at on the porosity parameter x follows eff fromEqs. (7) and(9), whichdeterminethetranslationaldif- Intheannulusmodel[31],aparticlesuspendedinaviscous fusioncoefficientofasingleporousparticle[24,25,32],and fluid is characterizedby two radii, a< and a>. Its hydrody- Eq. (A1), whichspecifiesthescatteringcoefficientA10. Ex- namicinteractionsaregovernedbythesmallerradiusa . In plicitly, < addition, there exist also direct pair interactions. Two parti- clescannotcometooclosetoeachother,withtheno-overlap at (x) = a 2x2(x−tanh(x)) . (31) radius equal to a . For such a model, the first-order virial eff 2x3+3(x−tanh(x)) > expansion of transport coefficients has been performed with respecttothevolumefractionφ = (4π/3)na3. Thecorre- For the rotational self-diffusion, the hydrodynamicradius > > spondingfirst-ordervirialcoefficientsλA =λA,λA,λAhave ar is obtained from the rotational diffusion coefficient of a t K r eff beenevaluatedasfunctionsofǫ,where singleporousparticle[32,33],withtheuseoftherelation, ǫ = a>−a<. (29) Dr = kBT . (32) a< 0 8πη0(areff)3 6 The dependence of ar on the porosity parameter x follows low. Systematically, the annulus approximation slightly un- eff from Eqs. (24) and (26), with the scattering coefficient A derestimatesthevirialcoefficientsofporousparticlessuspen- 11 givenbyEq.(A2). Astheresult, sions. For rotationaldiffusion, a reasonable 5% accuracy of this modelis reached at x >∼ 20. For translationaldiffusion 3 3coth(x) 1/3 (collectiveandself),thecomparableorevenbetter3-5%pre- areff(x) = a 1+ x2 − x . (33) cision is obtained already for x >∼ 10. For the sedimenta- (cid:20) (cid:21) tion coefficient, the accuracy is even higher (a 3% precision Forlargex, already at x = 5), owing to much larger absolute values of λ =8+λ . ar (x) = at (x)+O 1/x2 . (34) K C eff eff Theannulusmodelis expectedto workwellalso atlarger volume fractions, if the porosity parameter x is sufficiently Aporousparticleofradiusaandth(cid:0)eporo(cid:1)sityparameterx large. The accuracy of this approximation at larger volume ismodeledasanannulusparticle,seeFig.5,bymatchingits fractionswillbeinvestigatedinaseparatepublication.More- geometricalradiusatotheannulusno-overlapradiusa =a. > over, the annulus model is also useful to estimate diffusion The smaller annulus radius a = a is determined by the < eff andshearviscositycoefficientsofsuspensionsmadeofparti- effectivehydrodynamicradiusa ,giveninEqs. (31)-(33). eff clescharacterizedbyadifferentinternalstructure,suchasthe core-shell.Thisproblemwillbethesubjectofafuturestudy. (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)a(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) aeff a The scatterAinpgpencdoiexffiAc:iSencatsttefroinrgacoeufnfiicfioenrmtsly permeable POROUS ANNULUS sphere with x = κa, where a is the sphere radius and 1/κ isthehydrodynamicpenetrationdepth,havetheform[32], FIG. 5: The annulus (or hydrodynamic radius) model of a porous particle. (2l+1)g(x) l(2l−1)(2l+1)g(x) −1 A = l 1+ l a2l−1, In this way, the annulusparameter ǫ, defined in Eq. (29), l0 2gl−2(x) (cid:20) (l+1)x2gl−2(x) (cid:21) (A1) becomesthefollowingfunctionofx, g (x) a−a (x) Al1 = l+1 a2l+1, (A2) ǫ(x) = eff , (35) gl−1(x) a (x) eff 2l+3 2(2l+1)(2l+3) 2l+3 A = + a2A − a2l+1, witha (x)determinedbyEqs.(31)and(33). l2 2l−1 (l+1)x2 l0 2l−1 eff (cid:20) (cid:21) InFigs.2-4,theannuluscoefficientsλA(ǫ),withǫ(x)spec- (A3) ified by Eq. (35) (dashed lines) are comparedto the porous- 2(2l−1)(2l+1) particlevirialcoefficientsλ(x)(solidlines).Forthesedimen- Bl2 = 1+ (l+1)x2 a2Al2−a2l+3, (A4) tationcoefficient,theannulusmodelisaccurate,witha half- (cid:20) (cid:21) percentrelativeaccuracyalreadyatx = 20andareasonable wherel =1,2,...andg (x)= π/2xI (x)isthemodi- l l+1/2 3%precisionatx=5.Forthetranslationalself-diffusion,the fiedsphericalBesselfunctionofthefirstkind. annulusmodelislessaccurate,butstillitgivesonlya2%er- p rorforx=20,anda5%errorforx=10,anda7%errorfor x=5. Theleastaccurateistheannuluspredictionforthero- AppendixB:Theannulus(hydrodynamicradius)model tationalself-diffusion,witha5%errorforx = 20anda11% errorforx=10.Summarizing,theannulusmodel(HRM)ap- Forasuspensionofparticlesdescribedbytheannulus(hy- proximateswellthefirstvirialcoefficientsofporousparticles drodynamicradius)model,thevirialcoefficientsλAarefunc- suspensions, in the range of intermediate and small particle tionsofthemodelparameterǫ,definedbyEq.(29)andlisted permeability(i.e. formoderateandlargevaluesofx). in Table II. In this Appendix, we explain how these values havebeenevaluated. Thefirst-ordervirialexpansionofD /Dt,D /Dt,K and V. CONCLUSIONS t 0 C 0 D /Dr,canbeperformedwiththeuseofφ =(4π/3)na3, r 0 < < orφ definedbytheanalogicalexpression, > In this paper, the short-time diffusion properties of dilute suspensionsofuniformlyporoussphericalparticleshavebeen 1+λA(ǫ)φ +O φ2 = 1+λ¯A(ǫ)φ +O φ2 . (B1) > > < < investigated. The first-order virial coefficients λ of the dif- fusionandsedimentationcoefficientshavebeenevaluatedas Therefore, (cid:0) (cid:1) (cid:0) (cid:1) functionsofpermeability. Valuesofλarewell-approximated by the annulus(hydrodynamicradius)model, if the parame- λ¯A(ǫ) λA(ǫ) = . (B2) ter x is sufficientlylarge, i.e. the permeabilityis sufficiently (1+ǫ)3 7 To evaluate λ¯A(ǫ), we now introduce the dimensionless in- λ¯A(ǫ)=8 +∞J (R)R2dR terparticle distance as R = r/2a , and we replace the pair r r < Z1+ǫ distribution function from Eq. (10) by the following expres- 1+ǫ sion, = λhs−8 J (R)R2dR, (B6) r r Z1 0 for R≤1+ǫ, g (R) = , (B3) 0 (1 for R>1+ǫ. where whichcorrespondstotheno-overlapconditionata largerra- diusa . Then,weapplytheEqs.(12),(16)and(27),takenin > thenon-permeablehard-spherelimit,x = ∞. We obtainthe 1 J¯ (R)= Tr µtt(2)(R)+µtt(2)(R) . (B7) followingexpressions, K µt 11 12 0 h i +∞ λ¯A(ǫ)=8 J (R)R2dR t t Z1+ǫ InthisAppendix,allthemobilitycoefficients,theassociated = λhs−8 1+ǫJ (R)R2dR, (B4) functionsJ, and the superscript hs, refer to the hard spheres t t withthestickboundaryconditions. Z1 2 4 λ¯A(ǫ)= Ahs − Ahs(1+ǫ)2 Theaboveformulashavebeenappliedtocomputethefunc- K 5a3 12 a 10 < < tions λA(ǫ), λA(ǫ) and λA(ǫ), listed in Table II. The func- +∞ tions λ¯At (ǫ), λ¯AK(ǫ) and λ¯Ar(ǫ) have been also evaluated and + 8 J (R)R2dR t K r K listedinRef.[34],wheretheyhavebeenappliedtomodeldif- Z1+ǫ 1+ǫ fusionandrheologyofparticleswith a hardsolidcoreanda = λhs −8 J¯ (R)R2dR, (B5) thinporousshell. K K Z1 [1] B. Cichocki, M.L. Ekiel-Jez˙ewska and E. Wajnryb, “Lubri- persions in relation to their microstructure”. Colloids Surf. A cation corrections for three-particle contribution to short-time 183-185,335(2001). self-diffusion coefficients in colloidal dispersions.” J. Chem. [11] G.Petekidis,J.Gapin´ski,P.Seymour,J.S.vanDuijneveldt,D. Phys.111,3265(1999). Vlassopoulos and G.Fytas, “Dynamics of core-shell particles [2] B.Cichocki,M.L.Ekiel-Jez˙ewska,P.SzymczakandE.Wajn- inconcentratedsuspensions”.Phys.Rev.E69,042401(2004). ryb, “Three-particle contribution to sedimentation and collec- [12] M. Zackrisson, A. Stradner, P. Schurtenberger and J. Bergen- tivediffusioninhard-spheresuspensions”.J.Chem.Phys.117, holtz, Langmuir 21, “Small-Angle Neutron Scattering on a 1231(2002). CoreShell Colloidal System: A Contrast-Variation Study”. [3] B. Cichocki, M.L. Ekiel-Jez˙ewska and E. Wajnryb, “Three- 10835(2005). particle contribution to effective viscosity of hard-sphere sus- [13] Z.Adamczyk,B.Jachimska,andM.Kolasin´ska,“Structureof pensions”.J.Chem.Phys.119,606(2003). colloid silica determined by viscosity measurements”. J. Col- [4] A.J.BanchioandG.Na¨gele,“Short-timetransportpropertiesin loidInterfaceSci.273,668(2004). densesuspensions: fromneutraltocharge-stabilizedcolloidal [14] J.Masliyah,G.Neale,K.Malysa,andT.vandeVen,“Creeping spheres”.J.Chem.Phys.128,104903(2008). FlowoveraCompositeSphere:SolidCorewithPorousShell”. [5] C.N.Likos,S.Rosenfeldt,N.Dingenouts,M.Ballauff,P.Lind- Chem.Eng.Science,42,245-253(1987). ner, N.Werner, and F.Vo¨gtle, “Gaussian effectiveinteraction [15] W.vanSaarloos,“Onthehydrodynamicradiusoffractalaggre- betweenflexibledendrimersoffourthgeneration:Atheoretical gates”.Physica147A,280(1987). andexperimentalstudy”.J.Chem.Phys.117,1869(2002). [16] C.N.Likos,H.Lo¨wen,M.Watzlawek,B.Abbas,O.Jucknis- [6] S. Huißmann, A. Wynveen, C.N. Likos, and R. Blaak, “The chke,J.Allgaier,andD.Richter,“StarPolymersViewedasUl- effectsofpH,saltandbondstiffnessonchargeddendrimers”. trasoftColloidalParticles”.Phys.Rev.Lett.80,4450(1998). J.Phys.:Condens.Matter22232101(2010). [17] G.C.Abade,B.Cichocki,M.L.Ekiel-Jez˙ewska,G.Na¨geleand [7] S. Pyett and W. Richtering, “Structures and dynamics of E. Wajnryb, “Short-time dynamics of permeable particles in thermosensitive microgel suspensions studied with three- concentratedsuspensions”.J.Chem.Phys.132,014503(2010). dimensional cross-correlated light scattering”. J. Chem. Phys. [18] G.C.Abade,B.Cichocki,M.L.Ekiel-Jez˙ewska,G.Na¨gele,and 122,034709(2005). E.Wajnryb,“Dynamicsofpermeableparticlesinconcentrated [8] T. Eckert and W. Richtering, “Thermodynamic and hydrody- suspensions”.Phys.Rev.E81,020404(R)(2010). namicinteractioninconcentratedmicrogel suspensions: Hard [19] G.C.Abade,B.Cichocki,M.L.Ekiel-Jez˙ewska,G.Na¨gele,and orsoftspherebehavior?”J.Chem.Phys.129,124902(2008). E.Wajnryb,“High-frequencyviscosityofconcentratedporous [9] C. A. Coutinho, R. K. Harrinauth, V. K. Gupta, “Settling particlessuspensions”.J.Chem.Phys.133,084906(2010). characteristicsofcompositesofPNIPAMmicrogelsandTiO2 [20] G.C.Abade,B.Cichocki,M.L.Ekiel-Jez˙ewska,G.Na¨gele,and nanoparticles”.ColloidsSurf.A318,111(2008). E.Wajnryb,“High-frequencyviscosityandgeneralizedStokes- [10] M.H.G. Duits, P. A. Nommensen, D. van den Ende, and J. Einsteinrelationsindensesuspensionsofporousparticles”.J. Mellema,“Highfrequencyelasticmodulusofhairyparticledis- Phys.:Condens.Matter22,322101(2010). 8 [21] B. Cichocki, B.U. Felderhof, K. Hinsen, E. Wajnryb, and [29] G.K. Batchelor, “Sedimentation in a dilute dispersion of J. Bławzdziewicz,“Friction and mobility of many spheres in spheres”.J.FluidMech.52,245(1972). Stokesflow”.J.Chem.Phys.100,3780(1994). [30] S.B.Chenand A.Cai,“Hydrodynamic interactionsandmean [22] S.KimandS.J.Karrila. Microhydrodynamics.Principlesand settling velocity of porous particles in a dilute suspension”.J. SelectedApplications.Butterworth-Heinemann,London,1991. ColloidInterfaceSci.217,328(1999). [23] J.HappelandH.Brenner.LowReynoldsNumberHydrodynam- [31] B.CichockiandB.U.Felderhof,“DiffusionofBrownianpar- ics. MartinusNijhoff,Dordrecht,1986. ticleswithhydrodynamicinteractionandhardcorerepulsion.” [24] H.C.Brinkman,Proc.R.DutchAcad.Sci.50,618,821(1947). J.Chem.Phys.94,556(1991). [25] P.DebyeandA.M.Bueche,“Intrinsicviscosity,diffusion,and [32] R. Reuland, B.U. Felderhof and R.B. Jones, “Hydrodynamic sedimentationrateofpolymersinsolution.”J.Chem.Phys.16, interactionoftwosphericallysymmetricpolymers”.PhysicaA 573(1948). 93,465(1978). [26] B.Cichocki,B.U.FelderhofandR.Schmitz,“Hydrodynamic [33] B.U.FelderhofandJ.M.Deutch,“Frictionalpropertiesofdilute interactionsbetweentwosphericalparticles.”PhysicoChemical polymer solutions.I.Rotationalfrictioncoefficient”.J.Chem. Hydrodynamics10,383(1988). Phys.62,2391(1975). [27] J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, Aca- [34] B. Cichocki, M.L. Ekiel-Jez˙ewska and E. Wajnryb, “Suspen- demicPress,1976. sions of particles with solid core and thin permeable shell; [28] B. Cichocki and B. U. Felderhof, “Short-time diffusion coef- short-timedynamicsandhigh-frequencyrheology”,tobepub- ficients and high frequency viscosity of dilute suspensions of lishedinColloidsSurf.A. sphericalBrownianparticles.”J.Chem.Phys.89,1049(1988).