ebook img

First-order virial expansion of short-time diffusion and sedimentation coefficients of permeable particles suspensions PDF

0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview First-order virial expansion of short-time diffusion and sedimentation coefficients of permeable particles suspensions

First-order virialexpansionofshort-timediffusion andsedimentation coefficients ofpermeable particles suspensions Bogdan Cichocki,1 Maria L. Ekiel-Jez˙ewska,2,∗ GerhardNa¨gele,3 and Eligiusz Wajnryb2 1InstituteofTheoreticalPhysics,FacultyofPhysics,UniversityofWarsaw, Hoz˙a69,00-681Warsaw, Poland 2InstituteofFundamentalTechnologicalResearch,PolishAcademyofSciences,Pawin´skiego5B,02-106Warsaw,Poland 3Instituteof ComplexSystems, ICS-3, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany (Dated:January25,2011) Forsuspensionsofpermeableparticles,theshort-timetranslationalandrotationalself-diffusioncoefficients, and collective diffusion and sedimentation coefficients are evaluated theoretically. An individual particle is modeledasauniformlypermeablesphereofagivenpermeability,withtheinternalsolventflowdescribedby theDebye-Bueche-Brinkman equation. The particlesareassumed tointeract non-hydrodynamically by their excluded volumes. The virial expansion of the transport properties in powers of the volume fraction is per- formeduptothetwo-particlelevel.Thefirst-ordervirialcoefficientscorrespondingtotwo-bodyhydrodynamic interactionsareevaluatedwithveryhighaccuracybytheseriesexpansionininversepowersoftheinter-particle 1 distance.Resultsareobtainedanddiscussedforawiderangeoftheratio,x,oftheparticleradiustothehydro- 1 dynamicscreeninglengthinsideapermeablesphere. Itisshownthatforx >∼ 10,thevirialcoefficientsofthe 0 transportpropertiesarewell-approximatedbythehydrodynamicradius(annulus)modeldevelopedbyusearlier 2 fortheeffectiveviscosityofporous-particlesuspensions. n a PACSnumbers:82.70.Dd,66.10.cg,67.10.Jn J 3 2 I. INTRODUCTION radiustothehydrodynamicpenetrationdepthinsideaperme- able sphere. Large (low) values of x correspond to weakly ] (strongly)permeableparticles. Whilethemodelofuniformly t One of the theoretical methods to analyze transport prop- f permeablehardspheresignoresaspecificintra-particlestruc- o erties in suspensions of interacting colloidal particles is the ture,itisgenericinthesensethatthehydrodynamicstructure s virial expansion in terms of the particle volume fraction φ. . of more complex porous particles can be approximately ac- t Forsuspensionsofnon-permeablehardsphereswithstickhy- a counted for in terms of a mean permeability. In our related drodynamicboundaryconditions,virialexpansionresultsfor m previous publications, using a hydrodynamicmultipole sim- short-time properties are known to high numerical precision - up to the three-particlelevel, i.e., to quadraticorderin φ for ulation method of a very high accuracy[21], encodedin the d n diffusion and sedimentation coefficients [1, 2], and to third HYDROMULTIPOLEprogrampackage[1],wehavecalculated theshort-timetranslationaldiffusionproperties[17, 18], and o order in φ for the effective viscosity [3]. The concentration thehigh-frequencyviscosity[19,20]ofthepermeablespheres c range of applicability of these hard-sphere virial expansion [ results in comparison to simulation data has been discussed model, as functionsof φ and x. These results coverthe full 1 in[4]. Ourknowledgeonvirialexpansioncoefficientsofcol- range of permeabilities, with volume fractions extending up totheliquid-solidtransition. v loidaltransportpropertiesislessdevelopedwhensuspensions 6 ofsolvent-permeableparticlesareconsidered.Thetheoretical While the simulation results are importantfor the general 9 descriptionof their dynamicsis more complicatedsince one understanding of permeability effects in concentrated sys- 3 needstoaccountforthesolventflowalsoinsidetheparticles. tems,forpracticaluseinexperimentaldataevaluationandas 4 Permeableparticlesystemsarefrequentlyencounteredinsoft inputin long-timetheories, virialexpansionresultsbasedon . 1 matter science. Prominent examples of practical relevance arigoroustheoreticalcalculationarestillstronglyondemand. 0 which are the subject of ongoing research, are dendrimers Infact,theknowledgeoftheleading-ordervirialcoefficients 1 [5, 6], microgel particles [7–9], a large variety of core-shell canbe a goodstartingpointin derivingapproximateexpres- 1 particles with a dry core and an outer porous layer [10–14], sionsfortransportproperties,whichmaybeapplicableatcon- : v fractalaggregates[15],andstar-likepolymersoflowerfunc- centrationsmuchhigher than those where the original(trun- Xi tionality[16]. cated)virialexpansionresultisuseful. Anexampleincaseis providedin our recent derivation[20] of a generalizedSaitoˆ Inaseriesofrecentarticles[17–20],wehaveexploredthe r a genericeffectofsolventpermeabilityontheshort-timetrans- expression for the effective high-frequency viscosity η∞ of permeable spheres, based on the second-orderconcentration portusingthemodelofuniformlypermeablecolloidalspheres expansionresult,i.e. aHugginscoefficientcalculation,ofthis with excluded volume interactions. This simple model is property. specifiedbytwoparametersonly,namelytheparticlevolume fraction φ = (4π/3)na3, where n is the number concentra- In[19],wehaveperformedvirialexpansioncalculationsfor tionandaistheparticleradius,andtheratioxoftheparticle η∞.Wehaveinvestigatedthereinasimplifyinghydrodynamic radius model (HRM), where a uniformly permeable sphere of radius a is described by a spherical annulus particle with an inner hydrodynamic radius a (x) < a, and unchanged eff ∗Electronicaddress:[email protected] excluded-volumeradiusa. Inthisannulusmodel(HRM),the 2 Huggins coefficient describing two-body viscosity contribu- In this paper, the two-particle translational-translationalmo- tions has been evaluated and shown to be in a remarkably bility matrices µtt(r ,r ) are evaluated using the multipole ij 1 2 good agreement with the precise numerical data for porous method of solving the Stokes an DBB equations [21]. The particles, characterizedbya widerangeofpermeabilitiesre- clusterexpansionoftheabovemobilitymatricesreads, alizedinexperimentalsystems. Inthe presentarticle, the aforementionedtheoreticalwork µtt(r ,r )=µtδ 1+µtt(2)(r), (6) ij 1 2 0 ij ij onthevirialexpansionofthehigh-frequencyviscosityisgen- eralized to short-time diffusion properties. In Sec. II, the wherer=r2−r1 and virial expansion is performed for the translational and rota- 1 stieodniamlesnetlaf-tidoinffucosieofnficcioeenftfiKci,eanntsdDthteaansdsoDcira,terdescpoelcleticvteivlye,dthife- µt0 = 4πη0A10 (7) fusioncoefficientD =KDt/S(0).Here,S(0)isthesmall- C 0 isthesingleporous-particletranslationalmobility. HereA wavenumberlimitofthestaticstructurefactor,andDt isthe 10 0 isasingleporous-particlescatteringcoefficient[26],givenex- single-particle translationaldiffusioncoefficient. In Sec. III, plicitlyinAppendixA. Foranon-permeablehardspherewith weprovidehighlyaccuratenumericalvaluesforthefirst-order stickboundaryconditions,Ahs =3a/2. (i.e.,two-particle)virialcoefficients,λ (x),λ (x),λ (x)and 10 t r C The single particle scattering coefficients A , with l = λ (x), ofD ,D ,D andK,respectively,inthefullrange lσ K t r C 1,2,3,4,... and σ = 1,2,3 [26], are essential to perform ofpermeabilities. InSec.IV,wealsorecalculatethesevirial the multipole expansion. They determine the corresponding coefficientsapproximatelyonthebasisofthesimplifyingan- multipoles of the hydrodynamic force density on a particle nulusmodel(HRM).InSec.V,weconcludethatintherange immersedinanambientflow;examplesareEqs.(7)and(24). x>∼10typicalofmanypermeableparticlesystems,thevirial ThesamecoefficientsA specifyalsothecorrespondingmul- coefficientsarewellapproximatedbytheannulusmodel. lσ tipolesofthefluidvelocity,reflected(scattered)byaparticle immersedinagivenambientflow.ThisiswhyA arecalled lσ “scattering coefficients”. In the multipole approach, differ- II. THEORY encesin the internalstructureof particles(e.g. solid, liquid, gas,porous,core-shell,stick-slip),arefullyaccountedbydif- We consider a suspension made of a fluid with shear vis- ferentscatteringcoefficients. Theotherpartsofthemultipole cosityη andidenticalporousparticlesofradiusa. Thefluid 0 algorithmneednottobechanged. Thescatteringcoefficients flowischaracterizedbyReynoldsnumberRe<< 1. Outside are the matrix elements of two single-particle friction oper- the particles, the fluid velocity v and pressure p satisfy the ators, Z and Zˆ , which determine the hydrodynamic force Stokesequations[22,23], 0 0 densityexertedbyagivenambientflowona motionlessand η ∇2v(r)−∇p(r) = 0 afreelymovingparticle,respectively. 0 ∇·v(r) = 0, (1) Inthemultipoleexpansionmethod,thetwo-particlemobil- ityµ(2)(1,2)(e.g.translationalone,asinEq.(6),orrotational and inside the particles, the Debye-Bu¨che-Brinkman(DBB) one,asinEq.(23))isexpressedintermsofthesingle-particle equations[24,25], friction operators, Z (i) and Zˆ (i), with i = 1,2, and the 0 0 η ∇2v(r)−η κ2[v(r)−u (r)]−∇p(r) = 0 Green operator G(1,2). The later relates the flow outgoing 0 0 i fromparticle2andincomingonparticle1.Wecanwriteµ(2) ∇·v(r) = 0, (2) asaninfinitescatteringseries, whereκ−1isthehydrodynamicpenetrationdepth.Theskele- ton of the particle i, centered at ri, moves rigidly with the µ(2) = µ0Z0(1+GZˆ0)−1GZ0µ0 localvelocityui(r)=Ui+ωi×(r−ri),determinedbythe = µ Z GZ µ −µ Z GZˆ GZ µ +.... (8) translational and rotational velocities U and ω of the par- 0 0 0 0 0 0 0 0 0 i i ticle i, respectively. The fluid velocity and stress tensor are Since the multipole matrix elements of the Green tensor G continuousacross a particle surface. The effectof the parti- scaleasinversepowersoftheinterparticledistancer,Eq.(8) cleporosityisthereforedescribedbytheratioxoftheparti- correspondsto a power series in 1/r. Truncatingthe expan- cleradiusatothehydrodynamicscreeninglengthκ−1 ofthe sionat order1/r1000, we obtaina veryhighprecisionof the porousmaterialinsidetheparticle,i.e. mobility calculation, actually much higher than needed for anypracticalapplications. x = κa. (3) In the presentwork, we investigatethe short-timedynam- OwingtolinearityoftheStokesandDBBequationsandthe ics,attimescalest<<a2/Dt,where 0 boundaryconditions,theparticlevelocityU dependslinearly i ontheexternalforcesFj exertedonaparticlej. Inparticular, D0t =kBTµt0 (9) fortwointeractingsphericalparticles, 1,2, intheabsenceof externaltorquesandflows, is the single-particle translational diffusion coefficient, with theBoltzmannconstantk andtemperatureT. Ontheshort- U1 = µt1t1(r1,r2)·F1+µt1t2(r1,r2)·F2 (4) timescale,thesystemisdBescribedbytheequilibriumparticle U = µtt(r ,r )·F +µtt(r ,r )·F . (5) distribution [27]. In the further analysis, we will need only 2 21 1 2 1 22 1 2 2 3 the small-concentration limit g (r) of the pair distribution Forthenon-overlappingspheres[27], 0 function, where r is the interparticle distance. For particle- particledirectinteractionsdescribedbyapairpotentialV(r), S(0)=1−8φ+O(φ2). (21) thispairdistributionisg (r) = exp(−V(r)/k T). Fornon- 0 B Inthiscase, overlappingspheresofradiusa, 0 for r ≤2a, λC =λK +8. (22) g (r) = (10) 0 1 for r >2a. (cid:26) Therelation(22)followsfromEqs.(14),(19)and(20). We proceed by analyzing the short-time rotational self- Thefirst-ordertermsinthevirialexpansionoftheshort-time diffusion coefficient. In the absence of external forces and transport coefficients are obtained by averaging the corre- flows,thetwo-particlerotational-rotationalmobilitymatrices sponding two-particle mobility elements. As the result, the virialcoefficientsareobtainedasintegrals,whichinvolvethe µrijr(r1,r2)satisfytherelationanalogicaltoEqs.(4)-(5),with thetranslationalvelocitiesreplacedbytherotationalones,and mobilityelementsandg (r). 0 the forces replaced by the torques. The two-particle cluster The first-order virial expansion of the short-time transla- expansionnowreads, tionalself-diffusioncoefficienthastheform, D =Dt(1+λ φ+O(φ2)). (11) µrr(r ,r )=µrδ 1+µrr(2)(r), (23) t 0 t ij 1 2 0 ij ij Thecoefficientλtisgivenbytherelation[28], with +∞ 1 λt =8 g0(R)Jt(R)R2dR, (12) µr0 = 8πη A . (24) Z1 0 11 withR=r/2aand The scattering coefficient A11 for a porous particle [26] is giveninAppendixA. Foranon-permeablehardspherewith Jt(R)= µ1tTrµt1t1(2)(r). (13) theTshteicvkibrioaulnedxaprayncsioonndoitfiotnhse,rAoh1tas1ti=onaa3l.self-diffusioncoeffi- 0 cientis Here, Tr denotes the trace operation. For the sedimentation coefficient,oneobtains, D =Dr(1+λ φ+...), (25) r 0 r K =1+λ φ+... (14) K where where Dr =k Tµr (26) 0 B 0 2 8 +∞ λK = 5a3A12+ aA10 [g0(R)−1]RdR (15) and +∞ Z0 +∞ +8 g0(R)JK(R)R2dR, (16) λr =8 g0(R)Jr(R)R2dR, (27) Z1 Z1 and with 1 1 J (R)= Tr µtt(2)(r)+µtt(2)(r)−T (r) . (17) J (R)= Trµrr(2)(r). (28) K µt 11 12 0 r µr 11 0 0 h i Intheaboveexpression, 1+rr III. RESULTS T (r)= , (18) 0 8πη r 0 Toevaluatethefirstordervirialcoefficientsλ=λ ,λ ,λ , istheOseentensorandr=r/r. bb wecalculatetwo-particlemobilitymatrixelements,tperKformr- ThescatteringcoefficientA12 fora porousparticle[26] is ingaseriesexpansioninpowersof1/ruptotheorder1000, given explicitly in Appendix A. For a non-permeable hard asdescribedinSec.II. Integrationwithrespecttotheparticle b spherewiththestickboundaryconditions,Ahs =5a3/2. positionshasbeenperformedanalyticallytermbyterm,using 12 Thecollectivediffusioncoefficientisgivenby theexpressionsgivenintheprevioussection. Thevirialcoef- ficientsλhavebeenevaluatedforawiderangeofx. Selected D =DtK/S(0), (19) C 0 resultsarelistedinTableI. Alldisplayeddigitsaresignificant. (Moredataareavailableonrequest.) where S(0)is the zero-wavenumberlimit of the static struc- In Fig. 1, the first order viral expansion of the short-time turefactor,S(0)=limq→0S(q). Thefirst-ordervirialexpan- translationalself-diffusioncoefficientofaporous-particlesus- sionofEq. (19)hastheform, pensioniscomparedwiththeaccuratesimulationresultsper- D = Dt(1+λ φ+...). (20) formedinRef.[17]forvolumefractionsφ ≤ 0.45. Thefirst C 0 C 4 spheres. For uniformly porous particles, the boundary TABLE I: First virial coefficients λt, λK and λr for the short- collocation method was applied by Chen and Cai [30] time translational self-diffusion, sedimentation and rotational self- to evaluate λ = −3.46, −5.50, −6.23, −6.44 for diffusion,respectively. K x2 = 10α, with α = 1,2,3,4, respectively. Com- x λ λ λ t K r paring their results with our very accurate values, λ = K 3 -0.2497 -3.4451 -0.03257 −3.5723, −5.5480, −6.2504, −6.4563, we conclude that 4 -0.4159 -4.1066 -0.06336 theuncertaintyoftheirresultsisdecreasingfrom3%atα=1 to0.3%atα = 4. Theaccuracyoftheboundarycollocation 5 -0.5692 -4.5539 -0.09682 methodisworseatsmallervaluesofx,i.e. forlargerperme- 6 -0.7021 -4.8722 -0.12956 abilities. 7 -0.8149 -5.1084 -0.16012 In Figs. 2-4, the first-order virial coefficients λ are plot- 8 -0.9102 -5.2898 -0.18802 ted versus the porosity parameter 1/x, for 1/x ≤ 0.1, i.e. 9 -0.9909 -5.4328 -0.21327 for x ≥ 10. For 1/x = 0, i.e. for x = ∞, the limit 10 -1.0598 -5.5480 -0.23606 of a non-permeable hard sphere with radius a is recovered, 11 -1.1190 -5.6426 -0.25662 λhs = λ(∞). AsshowninFig.2,foralowpermeability,the 13 -1.2151 -5.7884 -0.29208 16 -1.3202 -5.9380 -0.33426 −4.5 18 -1.3730 -6.0095 -0.35692 20 -1.4161 -6.0662 -0.37628 −5 30 -1.5499 -6.2335 -0.44202 40 -1.6190 -6.3149 -0.48007 50 -1.6610 -6.3628 -0.50497 −5.5 65 -1.7001 -6.4064 -0.52959 K λ 100 -1.7460 -6.4563 -0.56075 −6 ∞ -1.8315 -6.5464 -0.63054 −6.5 1 −7 0 0.02 0.04 0.06 0.08 0.1 0.8 1/x FIG. 2: Two-particle sedimentation virial coefficient λK(x). Our tD00.6 preciseresultsforporousparticles(solidline)arewell-approximated D/t bytheannulusmodel(dashedline). x=5 coefficient λ ≈ λhs + 10/x is approximately a linear K K 0.4 x=10 function of 1/x. The coefficients λ and λ as functions of t r x=30 1/xareshowninFigs.3and4. x=∞ 0.2 0.05 0.15 0.25 0.35 0.45 φ FIG.1: Translational self-diffusioncoefficient Dt forasuspension ofporousparticles. Symbolsconnectedbysplines(solidlines): ac- curatesimulationresultsfromRef.[17]. Dashedstraightlines:first- ordervirialexpansioncalculatedinthiswork. ordervirialexpansion,seeEq.(11),canbeusedasanaccurate approximationofD inaverywiderangeofvolumefractions, t evenforrelativelylargevaluesofx(i.e. lowpermeabilities). In contrast, values of the sedimentation coefficient K differ significantly from the first-order virial estimation al- ready at rather small volume fractions, see Ref. [17]. Our values of λ (∞) reproduce with a higher accuracy K the classic Batchelor’s result [29] for non-permeable hard 5 0 ThemethodusedtodetermineλAisdescribedinAppendixB. ThecalculatedvaluesarelistedinTableII. −0.5 TABLE II: First-order virial coefficients λAt , λAK and λAr for the short-time translational self-diffusion, sedimentation and rotational self-diffusion,respectively,forasuspensionoftheannulusparticles. λt −1 ǫ λAt λAK λAr 0.00 -1.8315 -6.5464 -0.63055 0.01 -1.7523 -6.4601 -0.56666 −1.5 0.02 -1.6793 -6.3769 -0.51671 0.03 -1.6109 -6.2962 -0.47417 0.04 -1.5466 -6.2179 -0.43699 −2 0.05 -1.4860 -6.1419 -0.40402 0 0.02 0.04 0.06 0.08 0.1 1/x 0.06 -1.4286 -6.0680 -0.37451 0.07 -1.3743 -5.9962 -0.34791 FIG. 3: Two-particle translational self-diffusion virial coefficient 0.08 -1.3228 -5.9263 -0.32381 λt(x). Ourpreciseresultsforporousparticles(solidline)arewell- 0.09 -1.2739 -5.8582 -0.30189 approximatedbytheannulusmodel(dashedline). 0.10 -1.2274 -5.7918 -0.28187 0.11 -1.1832 -5.7272 -0.26354 0 0.13 -1.1008 -5.6027 -0.23122 0.18 -0.9253 -5.3166 -0.16974 −0.1 0.24 -0.7595 -5.0135 -0.12034 0.31 -0.6111 -4.7051 -0.08296 −0.2 0.45 -0.4093 -4.1986 -0.04242 −0.3 0.66 -0.2401 -3.6278 -0.01775 λr −0.4 Now we are going to comparethe first-order virial coeffi- cients,calculatedintheprevioussectionforporousparticles, −0.5 withthecorrespondingresults,obtainedinthissectionforthe annulus model, called also the hydrodynamic radius model −0.6 (HRM).AsimilarcomparisonhasbeendoneinRef.[19]for the effective viscosity. The key concept in this procedure is 0 0.02 0.04 0.06 0.08 0.1 thehydrodynamicradiusofaporousparticle. Forthetransla- 1/x tionaldiffusion(self-diffusionandsedimentation),thehydro- dynamicradiusat isobtainedfromthesingle-particletrans- eff FIG. 4: Two-particle rotational self-diffusion virial coefficient lationaldiffusioncoefficient,withtheuseoftherelation, λr(x). Ourpreciseresultsforporousparticles(solidline)arewell- approximatedbytheannulusmodel(dashedline). k T Dt = B . (30) 0 6πη at 0 eff IV. ANNULUSMODEL The dependence of at on the porosity parameter x follows eff fromEqs. (7) and(9), whichdeterminethetranslationaldif- Intheannulusmodel[31],aparticlesuspendedinaviscous fusioncoefficientofasingleporousparticle[24,25,32],and fluid is characterizedby two radii, a< and a>. Its hydrody- Eq. (A1), whichspecifiesthescatteringcoefficientA10. Ex- namicinteractionsaregovernedbythesmallerradiusa . In plicitly, < addition, there exist also direct pair interactions. Two parti- clescannotcometooclosetoeachother,withtheno-overlap at (x) = a 2x2(x−tanh(x)) . (31) radius equal to a . For such a model, the first-order virial eff 2x3+3(x−tanh(x)) > expansion of transport coefficients has been performed with respecttothevolumefractionφ = (4π/3)na3. Thecorre- For the rotational self-diffusion, the hydrodynamicradius > > spondingfirst-ordervirialcoefficientsλA =λA,λA,λAhave ar is obtained from the rotational diffusion coefficient of a t K r eff beenevaluatedasfunctionsofǫ,where singleporousparticle[32,33],withtheuseoftherelation, ǫ = a>−a<. (29) Dr = kBT . (32) a< 0 8πη0(areff)3 6 The dependence of ar on the porosity parameter x follows low. Systematically, the annulus approximation slightly un- eff from Eqs. (24) and (26), with the scattering coefficient A derestimatesthevirialcoefficientsofporousparticlessuspen- 11 givenbyEq.(A2). Astheresult, sions. For rotationaldiffusion, a reasonable 5% accuracy of this modelis reached at x >∼ 20. For translationaldiffusion 3 3coth(x) 1/3 (collectiveandself),thecomparableorevenbetter3-5%pre- areff(x) = a 1+ x2 − x . (33) cision is obtained already for x >∼ 10. For the sedimenta- (cid:20) (cid:21) tion coefficient, the accuracy is even higher (a 3% precision Forlargex, already at x = 5), owing to much larger absolute values of λ =8+λ . ar (x) = at (x)+O 1/x2 . (34) K C eff eff Theannulusmodelis expectedto workwellalso atlarger volume fractions, if the porosity parameter x is sufficiently Aporousparticleofradiusaandth(cid:0)eporo(cid:1)sityparameterx large. The accuracy of this approximation at larger volume ismodeledasanannulusparticle,seeFig.5,bymatchingits fractionswillbeinvestigatedinaseparatepublication.More- geometricalradiusatotheannulusno-overlapradiusa =a. > over, the annulus model is also useful to estimate diffusion The smaller annulus radius a = a is determined by the < eff andshearviscositycoefficientsofsuspensionsmadeofparti- effectivehydrodynamicradiusa ,giveninEqs. (31)-(33). eff clescharacterizedbyadifferentinternalstructure,suchasthe core-shell.Thisproblemwillbethesubjectofafuturestudy. (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)a(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) aeff a The scatterAinpgpencdoiexffiAc:iSencatsttefroinrgacoeufnfiicfioenrmtsly permeable POROUS ANNULUS sphere with x = κa, where a is the sphere radius and 1/κ isthehydrodynamicpenetrationdepth,havetheform[32], FIG. 5: The annulus (or hydrodynamic radius) model of a porous particle. (2l+1)g(x) l(2l−1)(2l+1)g(x) −1 A = l 1+ l a2l−1, In this way, the annulusparameter ǫ, defined in Eq. (29), l0 2gl−2(x) (cid:20) (l+1)x2gl−2(x) (cid:21) (A1) becomesthefollowingfunctionofx, g (x) a−a (x) Al1 = l+1 a2l+1, (A2) ǫ(x) = eff , (35) gl−1(x) a (x) eff 2l+3 2(2l+1)(2l+3) 2l+3 A = + a2A − a2l+1, witha (x)determinedbyEqs.(31)and(33). l2 2l−1 (l+1)x2 l0 2l−1 eff (cid:20) (cid:21) InFigs.2-4,theannuluscoefficientsλA(ǫ),withǫ(x)spec- (A3) ified by Eq. (35) (dashed lines) are comparedto the porous- 2(2l−1)(2l+1) particlevirialcoefficientsλ(x)(solidlines).Forthesedimen- Bl2 = 1+ (l+1)x2 a2Al2−a2l+3, (A4) tationcoefficient,theannulusmodelisaccurate,witha half- (cid:20) (cid:21) percentrelativeaccuracyalreadyatx = 20andareasonable wherel =1,2,...andg (x)= π/2xI (x)isthemodi- l l+1/2 3%precisionatx=5.Forthetranslationalself-diffusion,the fiedsphericalBesselfunctionofthefirstkind. annulusmodelislessaccurate,butstillitgivesonlya2%er- p rorforx=20,anda5%errorforx=10,anda7%errorfor x=5. Theleastaccurateistheannuluspredictionforthero- AppendixB:Theannulus(hydrodynamicradius)model tationalself-diffusion,witha5%errorforx = 20anda11% errorforx=10.Summarizing,theannulusmodel(HRM)ap- Forasuspensionofparticlesdescribedbytheannulus(hy- proximateswellthefirstvirialcoefficientsofporousparticles drodynamicradius)model,thevirialcoefficientsλAarefunc- suspensions, in the range of intermediate and small particle tionsofthemodelparameterǫ,definedbyEq.(29)andlisted permeability(i.e. formoderateandlargevaluesofx). in Table II. In this Appendix, we explain how these values havebeenevaluated. Thefirst-ordervirialexpansionofD /Dt,D /Dt,K and V. CONCLUSIONS t 0 C 0 D /Dr,canbeperformedwiththeuseofφ =(4π/3)na3, r 0 < < orφ definedbytheanalogicalexpression, > In this paper, the short-time diffusion properties of dilute suspensionsofuniformlyporoussphericalparticleshavebeen 1+λA(ǫ)φ +O φ2 = 1+λ¯A(ǫ)φ +O φ2 . (B1) > > < < investigated. The first-order virial coefficients λ of the dif- fusionandsedimentationcoefficientshavebeenevaluatedas Therefore, (cid:0) (cid:1) (cid:0) (cid:1) functionsofpermeability. Valuesofλarewell-approximated by the annulus(hydrodynamicradius)model, if the parame- λ¯A(ǫ) λA(ǫ) = . (B2) ter x is sufficientlylarge, i.e. the permeabilityis sufficiently (1+ǫ)3 7 To evaluate λ¯A(ǫ), we now introduce the dimensionless in- λ¯A(ǫ)=8 +∞J (R)R2dR terparticle distance as R = r/2a , and we replace the pair r r < Z1+ǫ distribution function from Eq. (10) by the following expres- 1+ǫ sion, = λhs−8 J (R)R2dR, (B6) r r Z1 0 for R≤1+ǫ, g (R) = , (B3) 0 (1 for R>1+ǫ. where whichcorrespondstotheno-overlapconditionata largerra- diusa . Then,weapplytheEqs.(12),(16)and(27),takenin > thenon-permeablehard-spherelimit,x = ∞. We obtainthe 1 J¯ (R)= Tr µtt(2)(R)+µtt(2)(R) . (B7) followingexpressions, K µt 11 12 0 h i +∞ λ¯A(ǫ)=8 J (R)R2dR t t Z1+ǫ InthisAppendix,allthemobilitycoefficients,theassociated = λhs−8 1+ǫJ (R)R2dR, (B4) functionsJ, and the superscript hs, refer to the hard spheres t t withthestickboundaryconditions. Z1 2 4 λ¯A(ǫ)= Ahs − Ahs(1+ǫ)2 Theaboveformulashavebeenappliedtocomputethefunc- K 5a3 12 a 10 < < tions λA(ǫ), λA(ǫ) and λA(ǫ), listed in Table II. The func- +∞ tions λ¯At (ǫ), λ¯AK(ǫ) and λ¯Ar(ǫ) have been also evaluated and + 8 J (R)R2dR t K r K listedinRef.[34],wheretheyhavebeenappliedtomodeldif- Z1+ǫ 1+ǫ fusionandrheologyofparticleswith a hardsolidcoreanda = λhs −8 J¯ (R)R2dR, (B5) thinporousshell. K K Z1 [1] B. Cichocki, M.L. Ekiel-Jez˙ewska and E. Wajnryb, “Lubri- persions in relation to their microstructure”. Colloids Surf. A cation corrections for three-particle contribution to short-time 183-185,335(2001). self-diffusion coefficients in colloidal dispersions.” J. Chem. [11] G.Petekidis,J.Gapin´ski,P.Seymour,J.S.vanDuijneveldt,D. Phys.111,3265(1999). Vlassopoulos and G.Fytas, “Dynamics of core-shell particles [2] B.Cichocki,M.L.Ekiel-Jez˙ewska,P.SzymczakandE.Wajn- inconcentratedsuspensions”.Phys.Rev.E69,042401(2004). ryb, “Three-particle contribution to sedimentation and collec- [12] M. Zackrisson, A. Stradner, P. Schurtenberger and J. Bergen- tivediffusioninhard-spheresuspensions”.J.Chem.Phys.117, holtz, Langmuir 21, “Small-Angle Neutron Scattering on a 1231(2002). CoreShell Colloidal System: A Contrast-Variation Study”. [3] B. Cichocki, M.L. Ekiel-Jez˙ewska and E. Wajnryb, “Three- 10835(2005). particle contribution to effective viscosity of hard-sphere sus- [13] Z.Adamczyk,B.Jachimska,andM.Kolasin´ska,“Structureof pensions”.J.Chem.Phys.119,606(2003). colloid silica determined by viscosity measurements”. J. Col- [4] A.J.BanchioandG.Na¨gele,“Short-timetransportpropertiesin loidInterfaceSci.273,668(2004). densesuspensions: fromneutraltocharge-stabilizedcolloidal [14] J.Masliyah,G.Neale,K.Malysa,andT.vandeVen,“Creeping spheres”.J.Chem.Phys.128,104903(2008). FlowoveraCompositeSphere:SolidCorewithPorousShell”. [5] C.N.Likos,S.Rosenfeldt,N.Dingenouts,M.Ballauff,P.Lind- Chem.Eng.Science,42,245-253(1987). ner, N.Werner, and F.Vo¨gtle, “Gaussian effectiveinteraction [15] W.vanSaarloos,“Onthehydrodynamicradiusoffractalaggre- betweenflexibledendrimersoffourthgeneration:Atheoretical gates”.Physica147A,280(1987). andexperimentalstudy”.J.Chem.Phys.117,1869(2002). [16] C.N.Likos,H.Lo¨wen,M.Watzlawek,B.Abbas,O.Jucknis- [6] S. Huißmann, A. Wynveen, C.N. Likos, and R. Blaak, “The chke,J.Allgaier,andD.Richter,“StarPolymersViewedasUl- effectsofpH,saltandbondstiffnessonchargeddendrimers”. trasoftColloidalParticles”.Phys.Rev.Lett.80,4450(1998). J.Phys.:Condens.Matter22232101(2010). [17] G.C.Abade,B.Cichocki,M.L.Ekiel-Jez˙ewska,G.Na¨geleand [7] S. Pyett and W. Richtering, “Structures and dynamics of E. Wajnryb, “Short-time dynamics of permeable particles in thermosensitive microgel suspensions studied with three- concentratedsuspensions”.J.Chem.Phys.132,014503(2010). dimensional cross-correlated light scattering”. J. Chem. Phys. [18] G.C.Abade,B.Cichocki,M.L.Ekiel-Jez˙ewska,G.Na¨gele,and 122,034709(2005). E.Wajnryb,“Dynamicsofpermeableparticlesinconcentrated [8] T. Eckert and W. Richtering, “Thermodynamic and hydrody- suspensions”.Phys.Rev.E81,020404(R)(2010). namicinteractioninconcentratedmicrogel suspensions: Hard [19] G.C.Abade,B.Cichocki,M.L.Ekiel-Jez˙ewska,G.Na¨gele,and orsoftspherebehavior?”J.Chem.Phys.129,124902(2008). E.Wajnryb,“High-frequencyviscosityofconcentratedporous [9] C. A. Coutinho, R. K. Harrinauth, V. K. Gupta, “Settling particlessuspensions”.J.Chem.Phys.133,084906(2010). characteristicsofcompositesofPNIPAMmicrogelsandTiO2 [20] G.C.Abade,B.Cichocki,M.L.Ekiel-Jez˙ewska,G.Na¨gele,and nanoparticles”.ColloidsSurf.A318,111(2008). E.Wajnryb,“High-frequencyviscosityandgeneralizedStokes- [10] M.H.G. Duits, P. A. Nommensen, D. van den Ende, and J. Einsteinrelationsindensesuspensionsofporousparticles”.J. Mellema,“Highfrequencyelasticmodulusofhairyparticledis- Phys.:Condens.Matter22,322101(2010). 8 [21] B. Cichocki, B.U. Felderhof, K. Hinsen, E. Wajnryb, and [29] G.K. Batchelor, “Sedimentation in a dilute dispersion of J. Bławzdziewicz,“Friction and mobility of many spheres in spheres”.J.FluidMech.52,245(1972). Stokesflow”.J.Chem.Phys.100,3780(1994). [30] S.B.Chenand A.Cai,“Hydrodynamic interactionsandmean [22] S.KimandS.J.Karrila. Microhydrodynamics.Principlesand settling velocity of porous particles in a dilute suspension”.J. SelectedApplications.Butterworth-Heinemann,London,1991. ColloidInterfaceSci.217,328(1999). [23] J.HappelandH.Brenner.LowReynoldsNumberHydrodynam- [31] B.CichockiandB.U.Felderhof,“DiffusionofBrownianpar- ics. MartinusNijhoff,Dordrecht,1986. ticleswithhydrodynamicinteractionandhardcorerepulsion.” [24] H.C.Brinkman,Proc.R.DutchAcad.Sci.50,618,821(1947). J.Chem.Phys.94,556(1991). [25] P.DebyeandA.M.Bueche,“Intrinsicviscosity,diffusion,and [32] R. Reuland, B.U. Felderhof and R.B. Jones, “Hydrodynamic sedimentationrateofpolymersinsolution.”J.Chem.Phys.16, interactionoftwosphericallysymmetricpolymers”.PhysicaA 573(1948). 93,465(1978). [26] B.Cichocki,B.U.FelderhofandR.Schmitz,“Hydrodynamic [33] B.U.FelderhofandJ.M.Deutch,“Frictionalpropertiesofdilute interactionsbetweentwosphericalparticles.”PhysicoChemical polymer solutions.I.Rotationalfrictioncoefficient”.J.Chem. Hydrodynamics10,383(1988). Phys.62,2391(1975). [27] J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, Aca- [34] B. Cichocki, M.L. Ekiel-Jez˙ewska and E. Wajnryb, “Suspen- demicPress,1976. sions of particles with solid core and thin permeable shell; [28] B. Cichocki and B. U. Felderhof, “Short-time diffusion coef- short-timedynamicsandhigh-frequencyrheology”,tobepub- ficients and high frequency viscosity of dilute suspensions of lishedinColloidsSurf.A. sphericalBrownianparticles.”J.Chem.Phys.89,1049(1988).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.