ebook img

First measurement of the Sivers asymmetry for gluons from SIDIS data PDF

1.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview First measurement of the Sivers asymmetry for gluons from SIDIS data

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH COMPASS CERN-EP-2017–xxx January2017 First measurement of the Sivers asymmetry for gluons from SIDIS data Abstract TheSiversfunctiondescribesthecorrelationbetweenthetransversespinofanucleonandthetrans- 7 1 verse motion of its partons. It was extracted from measurements of the azimuthal asymmetry of 0 hadronsproducedinsemi-inclusivedeepinelasticscatteringofleptonsofftransverselypolarisednu- 2 cleon targets, andit turned out tobe non-zero for quarks. In this letter the evaluation of the Sivers n asymmetry for gluons in the same process is presented. The analysis method is based on a Monte a Carlosimulationthatincludesthreehardprocesses: photon-gluonfusion,QCDComptonscattering J andleading-ordervirtual-photonabsorptionprocess. TheSiversasymmetriesofthethreeprocesses 0 aresimultaneouslyextractedusingtheLEPTOeventgeneratorandaneuralnetworkapproach. The 1 method is applied to samples of events containing at least two hadrons with large transverse mo- mentum from the COMPASS data taken with a 160 GeV/c muon beam scattered off transversely ] x polariseddeuteronsandprotons. Withasignificanceofmorethantwostandarddeviationsanegative e valueisobtainedforthegluonSiversasymmetry. TheresultofasimilaranalysisforaCollins-like - p asymmetryforgluonsisconsistentwithzero. e h [ 1 v 3 5 4 Keywords: deepinelasticscattering,gluon,Sivers,TMD,PDF. 2 0 . 1 0 7 1 : v i X r a (tobesubmittedtoPhys.Lett.B) TheCOMPASSCollaboration C.Adolph9,M.Aghasyan26,R.Akhunzyanov8,M.G.Alexeev28,G.D.Alexeev8,A.Amoroso28,29, V.Andrieux30,22,N.V.Anfimov8,V.Anosov8,A.Antoshkin8,K.Augsten8,20,W.Augustyniak31, A.Austregesilo17,C.D.R.Azevedo2,B.Badełek32,F.Balestra28,29,M.Ball4,J.Barth5,R.Beck4, Y.Bedfer22,J.Bernhard14,11,K.Bicker17,11,E.R.Bielert11,R.Birsa26,M.Bodlak19,P.Bordalo13,a, F.Bradamante25,26,C.Braun9,A.Bressan25,26,M.Bu¨chele10,W.-C.Chang23,C.Chatterjee7, M.Chiosso28,29,I.Choi30,S.-U.Chung17,b,A.Cicuttin27,26,M.L.Crespo27,26,Q.Curiel22,S.Dalla Torre26,S.S.Dasgupta7,S.Dasgupta25,26,O.Yu.Denisov29,#,L.Dhara7,S.V.Donskov21,N.Doshita34, Ch.Dreisbach17,V.Duic25,W.Du¨nnweberc,M.Dziewiecki33,A.Efremov8,P.D.Eversheim4, W.Eyrich9,M.Faesslerc,A.Ferrero22,M.Finger19,M.Fingerjr.19,H.Fischer10,C.Franco13, N.duFresnevonHohenesche14,11,J.M.Friedrich17,V.Frolov8,11,E.Fuchey22,d,F.Gautheron3, O.P.Gavrichtchouk8,S.Gerassimov16,17,J.Giarra14,F.Giordano30,I.Gnesi28,29,M.Gorzellik10,m, S.Grabmu¨ller17,A.Grasso28,29,M.GrossePerdekamp30,B.Grube17,T.Grussenmeyer10,A.Guskov8, F.Haas17,D.Hahne5,G.Hamar25,26,D.vonHarrach14,F.H.Heinsius10,R.Heitz30,F.Herrmann10, N.Horikawa18,e,N.d’Hose22,C.-Y.Hsieh23,f,S.Huber17,S.Ishimoto34,g,A.Ivanov28,29, Yu.Ivanshin8,T.Iwata34,V.Jary20,R.Joosten4,P.Jo¨rg10,E.Kabuß14,A.Kerbizi25,26, B.Ketzer4,G.V.Khaustov21,Yu.A.Khokhlov21,h,i,Yu.Kisselev8,F.Klein5,K.Klimaszewski31, J.H.Koivuniemi3,30,V.N.Kolosov21,K.Kondo34,K.Ko¨nigsmann10,I.Konorov16,17, V.F.Konstantinov21,A.M.Kotzinian28,29,O.M.Kouznetsov8,M.Kra¨mer17,P.Kremser10,F.Krinner17, Z.V.Kroumchtein8,Y.Kulinich30,F.Kunne22,K.Kurek31,R.P.Kurjata33,A.A.Lednev21,*, A.Lehmann9,M.Levillain22,S.Levorato26,Y.-S.Lian23,k,J.Lichtenstadt24,R.Longo28,29, A.Maggiora29,A.Magnon30,N.Makins30,N.Makke25,26,G.K.Mallot11,#,B.Marianski31, A.Martin25,26,J.Marzec33,J.Matousˇek19,26,H.Matsuda34,T.Matsuda15,G.V.Meshcheryakov8, M.Meyer30,22,W.Meyer3,Yu.V.Mikhailov21,M.Mikhasenko4,E.Mitrofanov8,N.Mitrofanov8, Y.Miyachi34,A.Nagaytsev8,F.Nerling14,D.Neyret22,J.Novy´20,11,W.-D.Nowak14,G.Nukazuka34, A.S.Nunes13,A.G.Olshevsky8,I.Orlov8,M.Ostrick14,D.Panzieri1,29,B.Parsamyan28,29,S.Paul17, J.-C.Peng30,F.Pereira2,M.Pesˇek19,D.V.Peshekhonov8,N.Pierre14,22,S.Platchkov22, J.Pochodzalla14,V.A.Polyakov21,J.Pretz5,j,M.Quaresma13,C.Quintans13,S.Ramos13,a,C.Regali10, G.Reicherz3,C.Riedl30,M.Roskot19,N.S.Rogacheva8,D.I.Ryabchikov21,i,A.Rybnikov8, A.Rychter33,R.Salac20,V.D.Samoylenko21,A.Sandacz31,C.Santos26,S.Sarkar7,I.A.Savin8, T.Sawada23 G.Sbrizzai25,26,P.Schiavon25,26,K.Schmidt10,m,H.Schmieden5,K.Scho¨nning11,l, E.Seder22,26,A.Selyunin8,L.Silva13,L.Sinha7,S.Sirtl10,M.Slunecka8,J.Smolik8,A.Srnka6, D.Steffen11,17,M.Stolarski13,O.Subrt11,20,M.Sulc12,H.Suzuki34,e,A.Szabelski31,26,#, T.Szameitat10,m,P.Sznajder31,S.Takekawa28,29,M.Tasevsky8,S.Tessaro26,F.Tessarotto26, F.Thibaud22,A.Thiel4,F.Tosello29,V.Tskhay16,S.Uhl17,A.Vauth11,J.Veloso2,M.Virius20, J.Vondra20,S.Wallner17,T.Weisrock14,M.Wilfert14,J.terWolbeek10,m,K.Zaremba33,P.Zavada8, M.Zavertyaev16,E.Zemlyanichkina8,N.Zhuravlev8,M.Ziembicki33 andA.Zink9 1 UniversityofEasternPiedmont,15100Alessandria,Italy 2 UniversityofAveiro,Dept.ofPhysics,3810-193Aveiro,Portugal 3 Universita¨tBochum,Institutfu¨rExperimentalphysik,44780Bochum,Germanyno 4 Universita¨tBonn,Helmholtz-Institutfu¨rStrahlen-undKernphysik,53115Bonn,Germanyn 5 Universita¨tBonn,PhysikalischesInstitut,53115Bonn,Germanyn 6 InstituteofScientificInstruments,ASCR,61264Brno,CzechRepublicp 7 MatrivaniInstituteofExperimentalResearch&Education,Calcutta-700030,Indiaq 8 JointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russiar 9 Universita¨tErlangen–Nu¨rnberg,PhysikalischesInstitut,91054Erlangen,Germanyn 10 Universita¨tFreiburg,PhysikalischesInstitut,79104Freiburg,Germanyno 11 CERN,1211Geneva23,Switzerland 12 TechnicalUniversityinLiberec,46117Liberec,CzechRepublicp 13 LIP,1000-149Lisbon,Portugals 14 Universita¨tMainz,Institutfu¨rKernphysik,55099Mainz,Germanyn 15 UniversityofMiyazaki,Miyazaki889-2192,Japant 16 LebedevPhysicalInstitute,119991Moscow,Russia 17 TechnischeUniversita¨tMu¨nchen,PhysikDept.,85748Garching,Germanync 18 NagoyaUniversity,464Nagoya,Japant 19 CharlesUniversityinPrague,FacultyofMathematicsandPhysics,18000Prague,CzechRepublicp 20 CzechTechnicalUniversityinPrague,16636Prague,CzechRepublicp 21 StateScientificCenterInstituteforHighEnergyPhysicsofNationalResearchCenter‘Kurchatov Institute’,142281Protvino,Russia 22 IRFU,CEA,Universite´ Paris-Saclay,91191Gif-sur-Yvette,Franceo 23 AcademiaSinica,InstituteofPhysics,Taipei11529,Taiwan,u 24 TelAvivUniversity,SchoolofPhysicsandAstronomy,69978TelAviv,Israelv 25 UniversityofTrieste,Dept.ofPhysics,34127Trieste,Italy 26 TriesteSectionofINFN,34127Trieste,Italy 27 AbdusSalamICTP,34151Trieste,Italy 28 UniversityofTurin,Dept.ofPhysics,10125Turin,Italy 29 TorinoSectionofINFN,10125Turin,Italy 30 UniversityofIllinoisatUrbana-Champaign,Dept.ofPhysics,Urbana,IL61801-3080,USA,w 31 NationalCentreforNuclearResearch,00-681Warsaw,Polandx 32 UniversityofWarsaw,FacultyofPhysics,02-093Warsaw,Polandx 33 WarsawUniversityofTechnology,InstituteofRadioelectronics,00-665Warsaw,Polandx 34 YamagataUniversity,Yamagata992-8510,Japant #Correspondingauthors *Deceased a AlsoatInstitutoSuperiorTe´cnico,UniversidadedeLisboa,Lisbon,Portugal b Also at Dept. of Physics, Pusan National University, Busan 609-735, Republic of Korea and at PhysicsDept.,BrookhavenNationalLaboratory,Upton,NY11973,USA c SupportedbytheDFGclusterofexcellence‘OriginandStructureoftheUniverse’(www.universe- cluster.de)(Germany) d SupportedbytheLaboratoired’excellenceP2IO(France) e AlsoatChubuUniversity,Kasugai,Aichi487-8501,Japant f AlsoatDept.ofPhysics,NationalCentralUniversity,300JhongdaRoad,Jhongli32001,Taiwan g AlsoatKEK,1-1Oho,Tsukuba,Ibaraki305-0801,Japan h AlsoatMoscowInstituteofPhysicsandTechnology,MoscowRegion,141700,Russia i SupportedbyPresidentialGrantNSh–999.2014.2(Russia) j Presentaddress: RWTHAachenUniversity,III.PhysikalischesInstitut,52056Aachen,Germany k AlsoatDept.ofPhysics,NationalKaohsiungNormalUniversity,KaohsiungCounty824,Taiwan l Presentaddress: UppsalaUniversity,Box516,75120Uppsala,Sweden m SupportedbytheDFGResearchTrainingGroupProgrammes1102and2044(Germany) n SupportedbyBMBF-Bundesministeriumfu¨rBildungundForschung(Germany) o SupportedbyFP7,HadronPhysics3,Grant283286(EuropeanUnion) p SupportedbyMEYS,GrantLG13031(CzechRepublic) q SupportedbySAIL(CSR)andB.Senfund(India) r SupportedbyCERN-RFBRGrant12-02-91500 s SupportedbyFCT-Fundac¸a˜oparaaCieˆnciaeTecnologia,COMPETEandQREN,GrantsCERN/FP 116376/2010,123600/2011andCERN/FIS-NUC/0017/2015(Portugal) t Supported by MEXT and JSPS, Grants 18002006, 20540299 and 18540281, the Daiko and Ya- madaFoundations(Japan) u SupportedbytheMinistryofScienceandTechnology(Taiwan) v SupportedbytheIsraelAcademyofSciencesandHumanities(Israel) w SupportedbyNSF-NationalScienceFoundation(USA) x SupportedbyNCN,Grant2015/18/M/ST2/00550(Poland) FirstmeasurementoftheSiversasymmetryforgluonsfromSIDISdata 1 1 Introduction An interesting and recently examined property of the quark distribution in a nucleon that is polarised transversely to its momentum is the fact that it is not left-right symmetric with respect to the plane defined by the directions of nucleon spin and momentum. This asymmetry of the distribution function is called the Sivers effect and was first suggested [1] as an explanation for the large left-right single transversespinasymmetriesobservedforpionsproducedinthereaction p↑p→πX [2–4]. Onthebasis ofT-invarianceargumentstheexistenceofsuchanasymmetricdistribution,knownasSiversdistribution function, was originally excluded [5]. Ten years later it was recognised however that it was indeed possible [6]. At that time it was also predicted that the Sivers function in semi-inclusive measurements of hadron production in DIS (SIDIS) and in the Drell-Yan process have opposite sign [7], a property referred to as “restricted universality”. A few years later the Sivers effect was experimentally observed in SIDIS experiments on transversely polarised proton targets, first by the HERMES Collaboration [8] and then by the COMPASS Collaboration [9]. Using the first HERMES data and the early COMPASS datatakenwithatransverselypolariseddeuterontarget[10],acombinedanalysissoonallowedforfirst extractionsoftheSiversfunctionforuandd-quarks[11–13]. MoreprecisemeasurementsoftheSivers effect were performed since by the HERMES [14] and COMPASS [15–17] Collaborations, and new measurements with a transversely polarised 3He target were also carried out at JLab [18,19]. More informationcanbefoundinrecentreviews[20–22]. Atthispointthequestionariseswhetherthegluondistributioninatransverselypolarisednucleonisleft- rightsymmetricorexhibitsaSiverseffectsimilartothequarkdistributions. Recently,theissuehasbeen discussedrepeatedlyintheliteratureandthepropertiesofthegluonSiversdistributionshavebeenstudied ingreatdetail[23,24]. Whileitwasfoundthatanon-zeroSiversfunctionimpliesmotionofpartonsinthe nucleon,presentlytheconnectionbetweentheSiversfunctionandthepartonorbitalangularmomentum in the nucleon can only be described in a model-dependent way [25]. The correspondence between the SiverseffectandthetransversemotionofpartonshasbeenoriginallyproposedbyM.Burkardt[26–28]. HenceitisofgreatinteresttoknowwhetherthereexistsagluonSiverseffectornot. Presently, little is known on the gluon Sivers function. An important theoretical constraint comes from theso-calledBurkardtsumrule[29]. Itstates,basedonthepresenceofQCDcolour-gaugelinks,thatthe totaltransversemomentumofallpartonsinsideatransverselypolarisedprotonshouldvanish. Fitstothe SiversasymmetryusingSIDISdata[13]almostfulfil,withinuncertainties,theBurkardtsumrule,leav- inglittlespaceforagluoncontribution. FromthenullresultoftheCOMPASSexperimentfortheSivers asymmetry of positive and negative hadrons produced on a transversely polarised deuteron target [10], togetherwithadditionaltheoreticalconsiderations,BrodskyandGardner[30]statedthatthegluoncon- tribution to the parton orbital angular momentum should be negligible, and consequently that the gluon Siverseffectshouldbesmall. Also,usingtheso-calledtransversemomentumdependent(TMD)gener- alisedpartonmodelandthemostrecentphenomenologicalinformationonthequarkSiversdistributions coming from SIDIS data, interesting constraints on our knowledge of the gluon Sivers function were derived[31]fromtherecentprecisedataonthetransversesinglespinasymmetryA (p↑p→π0X)mea- N suredatcentralrapiditybythePHENIXCollaborationatRHIC[32]. In DIS, the leading-order virtual-photon absorption process (LP) does not provide direct access to the gluon distribution since the virtual-photon does not couple to the gluon, so that higher-order processes have to be studied, i.e. QCD Compton scattering (QCDC) and Photon-Gluon Fusion (PGF). It is well known that in lepton-proton scattering one of the most promising processes to directly probe the gluon is open charm production, (cid:96)p↑ → (cid:96)(cid:48)cc¯X. This is the channel that the COMPASS Collaboration has investigated at length in order to measure ∆g/g , the gluon polarisation in a longitudinally polarised nucleon[33]. TaggingthecharmquarkbyidentifyingD-mesonsinthefinalstatehastheadvantagethat in the lowest order of the strong coupling constant there are no other contributions to the cross section and one becomes essentially sensitive to the gluon distribution function. An alternative method to tag 2 the gluon in DIS, which has the advantage of higher statistics, has also been developed and used by COMPASS,i.e. theproductionofhigh-p hadrons[34,35]. IntheLP,thehadrontransversemomentum T p withrespecttothevirtualphotondirection(intheframewherethenucleonmomentumisparallelto T this direction) originates from the intrinsic transverse momentum k of the struck quark in the nucleon T anditsfragmentation,whichbothleadtoasmalltransversecomponent. Onthecontrary,boththeQCDC andPGFhardprocessescanprovidehadronswithhightransversemomentum. Therefore,taggingevents with hadrons of high transverse momentum p enhances the contribution of higher-order processes. T Nevertheless, although in the high-p sample the PGF fraction is enriched, in order to single out the T contributionofthePGFprocesstothemeasuredasymmetrythecontributionsfromLPandQCDChave tobesubtracted[36]. In this letter, the gluon Sivers effect is investigated using COMPASS data collected by scattering a 160 GeV/c muon beam off transversely polarised deuterons and protons. The experimental set-up and the data selection are described in Section 2. In Section 3 the measurement is described. The details of theanalysis aregivenin Section4. Theprocedureof neuralnetwork(NN) trainingwitha MonteCarlo datasampleisshowninSection5. Section6containstheoverviewofthesystematicstudies. InSection7 theresultsarepresented. SummaryandconclusionsaregiveninSection8. 2 Experimentalset-upanddatasamples The COMPASS experiment uses a fixed target set-up and a polarised muon beam delivered by the M2 beamlineoftheCERNSPS.Thetransverselypolariseddeuterontargetusedforthe2003and2004data taking consisted of two oppositely polarised cylindrical cells situated along the beam, each 60 cm long with a 10 cm gap in between. In 2010 the transversely polarised proton target consisted of three cells: 30cm,60cmand30cmlongwiththecentralcelloppositelypolarisedtothedownstreamandupstream celland5cmgapsbetweenthecells. Duringalldatatakingperiodsthepolarisationwasreversedonceper week,inthiswaysystematiceffectsduetoacceptancearecancelled. Forthedeuteronrunsthetargetwas filledwith6LiD.The6Linucleuscanberegardedasonequasi-freedeuteronanda4Hecore. Theaverage dilution factor f , defined as the ratio of the DIS cross section on polarisable nucleons in the target to d the cross section on all target nucleons, amounts to 0.36 and includes also electromagnetic radiative corrections. The average polarisation of the deuteron was 0.50. For the asymmetry measurements on the proton, NH was used as a target. Its average dilution factor f amounts to 0.15 and the proton 3 p polarisationto0.80. Inbothcases,thenaturallypolarisedmuonbeamof160GeV/cwasused. Thebasic featuresoftheCOMPASSspectrometer,asdescribedinRef.[37],arethesamefor2003-4and2010data taking. Several upgrades were performed in 2005, the main one being the installation of a new target magnet,whichallowedtoincreasethepolarangleacceptancefrom70mradto180mrad. A crucial point of this analysis is the search for an observable that is strongly correlated with the gluon azimuthal angle φ . In the LEPTO generator [38], gluons are accessed via PGF with a quark-antiquark g pairinthefinalstateandthefragmentationprocessisdescribedbytheLundmodel[39]. Asaresultof MCstudies,thebestcorrelationisfoundbetweenφ andφ ,wherethelatterdenotestheazimuthalangle g P ofthevectorsumPofthetwohadronmomenta. Forthepresentanalysis,twochargedhadronsforeach eventareselected. Ifmorethantwochargedhadronsarereconstructedinanevent,onlythehadronwith the largest transverse momentum, p , and the one with the second-largest transverse momentum, p , T1 T2 aretakenintoaccount. InordertoenhancethePGFfractioninthesampleandatthesametimethecorre- lationbetweenφ andφ ,afurtherrequirementisappliedtothetransversemomentaofthetwohadrons: g P p >0.7GeV/cand p >0.4GeV/c. Moreover,thefractionalenergiesofthetwohadronsmustfulfil T1 T2 thefollowingconditions: z >0.1(i=1,2)andz +z <0.9,wherethelastrequirementrejectsevents i 1 2 fromdiffractivevectormesonproduction. Hadronpairsareselectedwithnochargeconstraint. Withthis choicethecorrelationcoefficientis0.54. TheSiversasymmetryisthenobtainedasthesinemodulation intheSiversangle,φ =φ −φ . Hereφ istheazimuthalangleofthenucleonspinvector. Xiv P S S FirstmeasurementoftheSiversasymmetryforgluonsfromSIDISdata 3 Thesamekinematicdataselectionisusedforbothdeuteronandprotondata. Therequirementonphoton virtuality, Q2>1 (GeV/c)2, selects events in the perturbative region and the one on the mass of the hadronicfinalstate, W >5GeV/c2,removestheregionoftheexclusivenucleonresonanceproduction. The Bjorken-x variable covers the range 0.003<x <0.7. For the fractional energy of the virtual Bj photon, y, the limit y > 0.1 removes a region sensitive to experimental biases and the requirement y<0.9rejectseventswithlargeelectromagneticradiativecorrections. 3 Siversasymmetryintwohadronproduction InordertoextractthegluonSiversasymmetry, µ+N →µ(cid:48)+2h+X eventsareselectedasdescribedin Section2. Bylabellingwiththesymbol↑thecrosssectionassociatedtoatargetcellpolarisedupwards in the laboratory and by ↓ the cross section of a target cell polarised downwards in the laboratory, the Siversasymmetrycanbewrittenas ∆σ((cid:126)x,φ ) A2h((cid:126)x,φ )= Siv , (1) T Siv σ((cid:126)x) where(cid:126)x=(x ,Q2,p ,p ,z ,z ), ∆σ ≡d7σ↑−d7σ↓ and σ ≡d7σ↑+d7σ↓. All cross sections are Bj T1 T2 1 2 integrated over the two azimuthal angles φ and φ , where φ is the azimuthal angle of the relative S R R momentumofthetwohadrons,R=P −P . Thenumberofeventsinaφ binisgivenby 1 2 Siv N((cid:126)x,φ )=α((cid:126)x,φ )(cid:0)1+ fP ASiv((cid:126)x)sinφ (cid:1). (2) Siv Siv T Siv Here f isthedilutionfactor, P thetargetpolarisationandα =anΦσ anacceptance-dependentfactor, T 0 whereaisthetotalspectrometeracceptance,nthedensityofscatteringcentres,Φthebeamfluxandσ 0 thespin-averagedpartofthecrosssection. Fromhereon,theSiversasymmetryA2h((cid:126)x,φ )isfactorised T Siv intotheazimuth-independentamplitudeASiv((cid:126)x)andthemodulationsinφ . Siv InordertoextracttheSiversasymmetryofthegluon,theamplitudeofthesinφ modulationisextracted Siv fromdata. ThegeneralexpressionforthecrosssectionofSIDISproductionwithatleastonehadronin the final state is well known [40]. It contains eight azimuthal modulations, which are functions of the single-hadronazimuthalangleandφ . Intheabsenceofcorrelationspossiblyintroducedbyexperimental S effects,theyareallorthogonal,sothattheSiversasymmetrycaneitherbeextractedastheamplitudeof the sinφ modulation or one can perform a simultaneous fit of all eight amplitudes. For the case of Siv heavy-quarkpairanddijetproductioninlepton-nucleoncollisions,allazimuthalasymmetriesassociated tothegluondistributionfunctionhavebeenrecentlyworkedoutinRef. 41. There,theSiversasymmetry is defined as the amplitude of the sin(φ −φ ) modulation, where φ is the azimuthal angle of the T S T transverse-momentumvectorofthequark-antiquarkpair, q . Inouranalysis, φ isreplacedbyφ , due T T P to its correlation with the gluon azimuthal angle φ , and the Sivers asymmetry is extracted taking into g account only the sin(φ −φ ) modulation in the cross section. It has been verified that including in the P S crosssectionthesameeighttransverse-spinmodulationsasinSIDISsingle-hadronproduction[40]and extractingsimultaneouslyallasymmetriesgivesthesameresultonthegluonSiversasymmetry. In order to determine the Sivers asymmetry for gluons from two-hadron production in SIDIS, it is nec- essary to assume that the main contributors to muon-nucleon DIS are the three processes (Fig. 1) as presentedinRef.[38]. Thismodelissuccessfulindescribingtheunpolariseddata. AtCOMPASSkine- matics, the leading process appears at zero-order QCD in the total DIS cross section and it is the dom- inant process, while the other two processes, photon-gluon fusion and QCD Compton, are first-order QCDprocessesandhencesuppressed. However,theircontributioncanbeenhancedbyconstrainingthe transversemomentumoftheproducedhadrons,asmentionedabove. IntroducingtheprocessfractionsR =σ /σ (j∈{PGF,QCDC,LP}),theamplitudeoftheSiversasym- j j 4 (a) (b) (c) Fig.1: Feynmandiagramsconsideredforγ∗N scattering: a)photon-gluonfusion(PGF),b)gluonradia- tion(QCDComptonscattering),c)Leadingorderprocess(LP). metrycanbeexpressedintermsoftheamplitudesofthethreecontributingprocesses: ∆σ σ ∆σ σ ∆σ σ ∆σ fP ASivsinφ = = PGF PGF + QCDC QCDC + LP LP T Siv σ σ σPGF σ σQCDC σ σLP (3) = fP (R ASiv +R ASiv +R ASiv)sinφ , T PGF PGF QCDC QCDC LP LP Siv with σ =∑jσj, ∆σ =∑j∆σj and fPTASjivsinφSiv =∆σj/σj. The determination of Rj is done on an event-by-event basis by using the neural networks (NN) trained on Monte Carlo data as described in Section5. 4 Asymmetryextractionusingthemethodsofweights The method adopted in the present analysis was already applied to extract the gluon polarisation from the longitudinal double-spin asymmetry in the SIDIS measurement of single-hadron production [36]. Both for the deuteron data (two target cells) and the proton data (three target cells), four target con- figurations can be introduced. In the case of the two-cell target: 1 - upstream, 2 - downstream, 3 - upstream(cid:48), 4 - downstream(cid:48). In the case of the three-cell target: 1 - (upstream+downstream), 2 - centre, 3 - (upstream(cid:48)+downstream(cid:48)), 4 - centre(cid:48). Here upstream(cid:48), centre(cid:48) and downstream(cid:48) denote the cells af- ter the polarisation reversal and configuration 1 has the polarisation pointing upwards in the laboratory frame. DecomposingtheSiversasymmetryintotheasymmetriesofthecontributingprocesses(Eq.(3)) andintroducingtheSiversmodulationβt((cid:126)x,φ )=R ((cid:126)x)f((cid:126)x)Pt sinφ ,whichisspecificforprocess j, j Siv j T Siv onecanrewriteEq.(2): (cid:16) Nt((cid:126)x,φ )=αt((cid:126)x,φ ) 1+βt ((cid:126)x,φ )ASiv ((cid:126)x) Siv Siv PGF Siv PGF (4) (cid:17) +βt ((cid:126)x,φ )ASiv ((cid:126)x)+βt ((cid:126)x,φ )ASiv((cid:126)x) , QCDC Siv QCDC LP Siv LP wheret =1,2,3,4denotesthetargetconfiguration. In order to minimise statistical uncertainties for each process, a weighting factor is introduced. It is known [42] that the choice ω =β for the weight optimises the statistical uncertainty but variations of j j thetargetpolarisationP intimemayintroduceabiastothefinalresult. Therefore,theweightingfactor T ω ≡β /P isusedinstead. Eachofthefourequations(4)isweightedthreetimeswithω dependingon j j T j the process j ∈{PGF,QCDC,LP} and integrated over φ and(cid:126)x, yielding twelve observed quantities Siv FirstmeasurementoftheSiversasymmetryforgluonsfromSIDISdata 5 qt: j (cid:90) qt = d(cid:126)xdφ ω ((cid:126)x,φ )Nt((cid:126)x,φ ) j Siv j Siv Siv (cid:16) (cid:17) =α˜t 1+{βt } (cid:8)ASiv (cid:9) +{βt } (cid:8)ASiv (cid:9) +{βt } (cid:8)ASiv(cid:9) , (5) j PGF ωj PGF βPGFωj QCDC ωj QCDC βQCDCωj LP ωj LP βLPωj where α˜tj is the ωj-weighted acceptance-dependent factor. The quantities {βit}ωj and {ASiiv}βitωj are weightedaverages,wheretheweightfactorisdenotedinthesubscript.1 Theacceptancefactorsα˜t cancelwhenforasymmetryextractiononeusesthedoubleratio j q1q4 j j r := (6) j q2q3 j j asthedatatakingwasperformedsuchthatα˜1α˜4/α˜2α˜3=1. Ifthisconditionisnotfulfilled,falseasym- j j j j metriesmayoccur. Itischeckedthatthisisnotthecase(seeSection6). Intheanalysis,thequantitiesq and{βt} areapproximatedasfollows: j i ωj Nt qt ≈ ∑ωk, (7) j j k=1 Nt ∑ βt,kωk i j {βt} ≈ k=1 . (8) i ωj Nt ∑ ωk j k=1 The latter approximation holds for small observed raw asymmetries, i.e. ωA (cid:28) 1. In order to avoid numericalinconsistenciesinEq.(8)duetoazero-polewhenintegratingoverthefullrangeofφ ,2 two Siv bins in φ ([0;π],[π;2π]) are introduced. In the aforementioned three double ratios given in Eq. (6) Siv onlyasymmetriesareunknown. However,inordertosolvethesystemofequationsoneneedstoassume that the weighted asymmetry for a given process i is the same for the three different weights ω β, i.e. j i {A} ={A} ={A} . Thismeansthatthevaluesofω andA mustbeuncorrelated. For i βiωPGF i βiωQCDC i βiωLP j i example, since ω is proportional to R , which strongly depends on the hadron transverse momentum, j j onehastouseakinematicregionwheretheasymmetriesA areexpectedtobeindependentof p . Under i T theseassumptions,thenumberofunknownweightedasymmetriesisthree,whichexactlycorrespondsto thenumberofequationsoftype(6). Theseequationsaresolvedbya χ2 fitthatincludessimultaneously bothbinsinφ . Siv Assuming that A can be approximated by a linear function of x and that x is not correlated with ω , i i i j resultsin {A} =A({x} ). (9) i βiωi i i βiωi This approximation allows to interpret the obtained results as an asymmetry value measured at the weighted value of x. For each process, the weighted value of x is obtained from MC using the rela- i i 1{β}ω = (cid:82)(cid:82)ααβωωdd(cid:126)x(cid:126)xddφφSSiviv, {A}βω = (cid:82)(cid:82)Aααββωωdd(cid:126)x(cid:126)xddφφSSiviv 2Notethatωk,whichcontainssinφ ,isintegratedintheregion0to2π. j Siv 6 tion Ni ∑ xkβkωk i i i {x} = k=1 . (10) i βiωi Ni ∑ βkωk i i k=1 Here, N is the number of events of type i in MC data. The assumption that the values of x are not i i correlatedwithω ,whichallowsustoconsideronly{x} ,wasverifiedusingMCdata. Thedetailsof j i ωiβi theanalysisaregivenin[43]. 5 MonteCarlooptimisationandNeuralNetworktraining The present analysis is very similar to the one used for the ∆g/g extraction from high-p hadron T pairs [35] and single hadrons [36]. For the NN training with custom input, output and target vector the package NetMaker [44] is used. The NN is trained with a Monte Carlo sample with process iden- tification. As input vector the following six kinematic variables are chosen: x ,Q2,p ,p ,p ,p . Bj T1 T2 L1 L2 The latter two are the longitudinal components of the hadron momenta. The trained neural network is appliedtothedatabytakingthevectoroftheaforementionedsixvariables,anditsoutputisinterpreted as probabilities that the given event is a result of one of the three contributing processes. Hence the simulateddistributionsofthesevariablesneedtobeinagreementwiththecorrespondingdistributionsin thedatasamples. UsingtheLEPTOgenerator(version6.5)[38],twoseparateMCdatasampleswereproducedtosimulate the deuteron and proton data. The generator is tuned to the COMPASS data sample obtained with the high-p hadron-pair selection as described in Ref. [35]. The MSTW08 parameterisation of input T PDFs [45] was chosen as it gives a good description of the F structure function in the COMPASS 2 kinematicrangeandisvaliddowntoQ2=1(GeV/c)2. Electromagneticradiativecorrections[46]were appliedasaweightingfactortotheMCdistributionsshowninFigures2and3butnotintheMCsamples usedinNNtraining. Thisdifferencewasstudiedanditwasestimatedtobenegligible. The generated events were processed by COMGEANT, the COMPASS detector simulation program basedonGEANT3. TheMCsamplesfortheprotonanddeuterondatadifferinthetargetmaterialandin the spectrometer set-up. The FLUKA package [47] is used in order to simulate secondary interactions. Asthenextstep,theCOMPASSreconstructionprogramCORALwasapplied. Thesamedataselection as for real events was used for MC data. Figures 2 and 3 show the comparison between experimental andMCdataforthecaseofthedeuteronandprotondata,respectively. The main goal of the NN parameterisation is the estimation of the process fractions R . In the typical j caseofsignalandbackgroundseparation,theexpectedNNoutputwouldbesettooneforthesignaland zeroforthebackground. TheoutputvaluereturnedbytheNNwouldthencorrespondtothefractionof signal events in the sample in the given phase space point of the input parameter vector. In the present analysis, theprocessfractionswereestimatedsimultaneously. Inordertohaveaclosurerelationonthe processprobabilities,thesumofthemmustadduptoone,henceonlytwoindependentoutputvariables fromtheNNareneeded. TheestimationoftheprocessfractionsRj fromtheNNoutputisaccomplished by assigning to each event the probabilities PPGF, PQCDC and PLP. The distribution of the NN output NN NN NN after training is shown in Fig. 4 on the “Mandelstam representation”, i.e. as points in an equilateral triangle with unit height. Points outside of the triangle refer to one estimator being negative, which is possiblebecauseinthetrainingtheestimatorsarenotboundtobepositive. Thedirectseparationofthe PGF process using this distribution is statistically less efficient than weighting each event by the three probabilities obtained from the NN output values. These probabilities are used as values of the process fractions(R ,R andR )inthedataanalysisdescribedinSection4. PGF QCDC LP ForthevalidationoftheNNtraining,astatisticallyindependentMCsampleisusedtocheckhowtheNN

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.