ebook img

Finite Type Arithmetic PDF

123 Pages·2010·0.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Finite Type Arithmetic

Finite Type Arithmetic Computable Existence Analysed by Modified Realisability and Functional Interpretation H KlausFrovinJørgensen Master’sThesis,March19,2001 Supervisors: UlrichKohlenbachandStigAndurPedersen DepartmentsofMathematicsandPhilosohy UniversityofRoskilde Abstract in English and Danish MotivatedbyDavidHilbert’sprogramandphilosophyofmathematicswegiveinthecontext ofnaturaldeductionanintroductiontotheDialecticainterpretationandcomparetheinterpre- tationwithmodifiedrealisability.Weshowhowtheinterpretationsrepresenttwostructurally differentmethodsforunwindingcomputableinformationfromproofswhichmayusecertain primafacie non-constructive(ideal)elementsofmathematics. Consequently,thetwo inter- pretationsalsorepresentdifferentviewsonwhatistoberegardedasconstructiverelativeto arithmetic. Thedifferencesshowupin theinterpretationsofextensionality,Markov’sprin- cipleandrestrictedformsofindependence-of-premise.Weshowthatitiscomputationallya subtleissue tocombinetheseidealelementsandprovethatMarkov’sprincipleiscomputa- tionallyincompatiblewithindependence-of-premisefornegatedpurelyuniversalformulas. In the contextof extracting computationalcontentfrom proofs in typed classical arith- meticwealsocompareinanextensionalcontext(i)themethodprovidedbynegativetrans- lation + Dialectica interpretation with (ii) the method provided by negative translation + w A-translation+modifiedrealisability.NoneofthesemethodscanbeappliedfullytoE-PA , w sinceE-HA isnotclosedunderMarkov’srule,whereasthemethodbasedontheDialectica interpretationcanbeusedifonlyweakextensionalityisrequired. Finally, we presenta new variantof the Dialectica interpretationin orderto obtain(the well-known)existenceproperty,disjunctionpropertyandotherclosureresultsfortypedin- tuitionisticarithmeticandextensionshereof. Henceitisshownthatfunctionalinterpretation canbeusedalsoforthispurpose. ◭◮ Vi giver med udgangspunkt i Hilberts program og hans matematikfilosofi en introduktion til Dialectica fortolkningeninden for naturlig deduktion. Denne fortolkning sammenlignes med modificeret realiserbarhed, og vi viser, hvordan de to fortolkninger repræsenterer to struktureltforskelligemetodertilatuddriveberegnbarinformationfraikke-konstruktivebe- viser.Sa˚ledesrepræsentererdetofortolkningerforskelligesynpa˚,hvaddererkonstruktivt. Forskellighedernevisersigisæriforbindelsemedekstensionalitet,Markovsprincipogprin- cippet om uafhængighed af præmis. Vi viser, at det er et subtilt emne at kombinere disse ideal-elementer,ogatMarkov’sprincipogprincippetomuafhængighedafnegeretuniverselle præmisserisærdeleshederuforligneligemedhensyntilberegnbarhed. Medhensyntilberegnbartindholdafklassiskebeviserindenfortypetaritmetiksammen- lignerviienekstensionelkontekst(i) metodengivetvednegativoversættelse+ Dialectica fortolkningmed(ii)metodengivetvednegativoversættelse+A-oversættelse+modificeret w realiserbarhed.Ingenafdisse metoderkanbenyttesifuldudstrækningindenforE-PA ,da w E-HA ikkeerlukketunderMarkovsregel.Metodenbaseretpa˚Dialecticafortolkningenkan derimodanvendes,hvisdetkunkræves,atteorienharsvagekstensionalitet. TilsidstintroduceresennyvariantafDialecticafortolkningen.Dennebenyttestilatvise (de velkendte) eksistensegenskab, disjunktionsegenskab og andre egenskaber med hensyn tillukkethedfortypetintuitionistiskaritmetikinklusiveenekstension.Sa˚ledesvisesdet, at funktionalfortolkningogsa˚ kanbenyttestildetteforma˚l. iv Preface Thismaster’sthesisiswrittenforobtainmentofamaster’sdegreeinbothmathematicsand philosophy. Hence, the present text treats topics from both fields, as they are connected in logic. The specific purpose is to give a systematic analysis of certain prima facie non- constructiveelementsofmathematicsbyusingdifferentinterpretationsandtranslationspro- videdbyprooftheory. Myhopeisthatthereaderwillacknowledgethistohavesignificance bothwithinmathematicsandphilosophy. My gratitude goes to my supervisors: Ulrich Kohlenbachin mathematics and Stig An- dur Pedersen in philosophy. Ulrich Kohlenbachhas been most generouswith his time and expertise,andallresultspresentedhereareobtainedincollaborationwith him. Stig Andur Pedersenintroducedmeseveralyearsagotologicandprooftheoryandtoa veryfruitful,I think, view on mathematics. They have both in a very friendly and constructive way sup- portedandguidedme. IalsowanttothankUlrichBergerforgivingmetheidea,thatoneshouldgiveaDialectica interpretationwithinnaturaldeduction. Ihavegainedalotinpursuingthis. Withrespectto thefinalproofreadingIwanttothankVincentF.Hendricksforhisthoroughtreatment;also Dan Temple adjusted my language. Finally, thanks also to Jesper H. Andersen and Ivar Rummelhoffforusefulcomments. v Contents 1 SettingandObjectofSurvey 1 1.1 Hilbert’sprogramandviewonmathematics . . . . . . . . . . . . . . . . . . 3 1.2 FailureofHilbert’sprogram—failureofseparation . . . . . . . . . . . . . . 5 1.3 TheproofinterpretationbyHeyting . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Go¨del’sviewonaconstructivefoundation . . . . . . . . . . . . . . . . . . . 9 1.5 Motivationforandfocusofthisthesis . . . . . . . . . . . . . . . . . . . . . 11 2 IntroductiontoGo¨del’sDialecticaInterpretation 15 2.1 AHilbertsystemforweaklyextensionalHeytingarithmeticinallfinitetypes 15 w 2.2 AxiomsandrulesofWE-HA . . . . . . . . . . . . . . . . . . . . . . . . . 17 H w 2.3 WE-T asthequantifierfreesubsystemofWE-HA . . . . . . . . . . . . . 21 H H 2.4 DefinitionandanalysisofDialecticatranslation . . . . . . . . . . . . . . . . 22 w 2.5 InterpretationtheoremforWE-HA . . . . . . . . . . . . . . . . . . . . . . 27 H 3 InterpretationTheoremswithinNaturalDeduction 29 w 3.1 FormulationofWE-HA andWE-T . . . . . . . . . . . . . . . . . . . . . 29 ND ND 3.2 Discussionofthedeductiontheorem . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Translationofderivationsunderassumptions . . . . . . . . . . . . . . . . . 36 w 3.4 InterpretationtheoremforWE-HA . . . . . . . . . . . . . . . . . . . . . . 37 ND 3.5 RelationbetweentheDialecticainterpretationandtheDiller-Nahminterpre- tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.6 IntuitionisticlinearlogicandtheDialecticainterpretation . . . . . . . . . . . 49 w w w 3.7 InterpretationtheoremforWE-HA +MP +IP +AC . . . . . . . . . . . 51 3.8 Thenon-constructivetheoryWE-HAw +IPw +M∀ Pw . . . . . . . . . . . . . 52 ¬∀ 4 ClassicalArithmeticandKuroda’sNegativeTranslation 55 w 4.1 FormulationofWE-PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Fromclassicaltointuitionisticlogic:Kuroda’snegativetranslation . . . . . . 56 w 4.3 InterpretationtheoremforWE-PA +QF-ACandconsistencyofthetheory . 59 4.4 Extractiontheoremandconservativeness . . . . . . . . . . . . . . . . . . . . 60 4.5 Thephilosophicalsignificanceofinterpretationtheorems . . . . . . . . . . . 62 w 4.6 PAasasubsystemofWE-PA . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.7 Theno-counterexampleinterpretationofPeanoarithmetic . . . . . . . . . . 65 5 ModifiedRealisability,A-translationandApplications 69 w 5.1 DefinitionofE-HA andmodifiedrealisability . . . . . . . . . . . . . . . . 70 w w 5.2 RealisabilityinterpretationofE-HA +AC+IP . . . . . . . . . . . . . . . 72 ef 5.3 Contractionandnegativelyoccurringuniversalquantifiers . . . . . . . . . . 74 5.4 Markov’sprincipleintuitionisticallyunprovable . . . . . . . . . . . . . . . . 75 w w 5.5 E-HA IP ACnotclosedunderMarkov’srule . . . . . . . . . . . . . . 75 ± ef± vii viii Contents 5.6 TheFriedman-DragalinA-translationforformulasofHA . . . . . . . . . . . 77 5.7 Realisabilitywithtruth:Closureproperties. . . . . . . . . . . . . . . . . . . 80 6 ClosureunderRulesbyFunctionalInterpretations 84 w 6.1 Thereisno‘Dialectica-with-truth’interpretationofWE-HA . . . . . . . . . 84 6.2 DefinitionandsoundnessofQ-translation . . . . . . . . . . . . . . . . . . . 86 6.3 ClosurepropertiesofintuitionisticarithmeticshowedbyQ-translation . . . . 98 6.4 Q-interpretationisnotclosedunderdeductions . . . . . . . . . . . . . . . . 99 6.5 ClosurepropertiesofWE-HAw +IPw +MPw +AC+G byDialectica . . . . 100 6.6 ConstructivenessofWE-HAw +IPw ∀+MPw +AC+G . . . . . . . . . . . . . 101 ∀ 7 Conclusions 102 7.1 Interpretingmathematicsbymethodsfromprooftheory . . . . . . . . . . . . 103 7.2 EvaluationofmodifiedrealisabilityandDialecticainterpretation . . . . . . . 105 7.3 Twostrongconstructivetheories . . . . . . . . . . . . . . . . . . . . . . . . 106 7.4 Dialecticaasatoolinproofminingandreductiveprooftheory . . . . . . . . 106 7.5 Differentinterpretations—differentvalidations:Mathematicsandlanguage . 108 Bibliography 110 CHAPTER 1 Setting and Object of Survey Thisthesisconcernsprooftheoryandthesignificanceofcertainprooftheoreticalinvestiga- tions.Prooftheoryisthepartofmathematicallogicwhichstudiestheconceptsofmathemat- ical proofs and mathematical provability. Proofs are an indispensable part of mathematics andthereforeprooftheoryisalsoastudyofthefoundationsofmathematics.Letuselaborate ontheconnectionbetweenprooftheoryandphilosophyofmathematics. First, proof theory studies proofs as formal objects whereas, generally, mathematical proofsareinformalandtoacertaindegreeimprecise. Thereis,however,inpracticeaclose affinitybetweenformalandinformalproofs.Partsofproofsusedinmathematicalarguments canbemoreorlessformal.Butincasethereisadisagreementonaproofonecantrytomake theproblematicpartoftheproofmoreformalinordertobepreciseonthematter. Onecan, inotherwords,formaliseindifferentdegreesandthecompleteformalproofcanbeviewedas somekindofidealisationofthemathematicalproof. Itisinthisrespectprooftheorystudies mathematicalproofs. Second, from results obtained in the 1930s in mathematical logic it follows that there cannotbeformaltheorieswhichrepresentallofmathematics: Foranygivenformaltheory containinga minimumofarithmetictherewillalwaysbemathematicaltheoremswhichare independentofthattheory. Thereare, inotherwords,theoremsofthetheorywhichcannot beprovednordisproved. Itis,nevertheless,possibletorepresentbigbodiesofmathematics informalframeworksandtostudyinternalrelationships.Apartofmathematicallogiccalled reversemathematicsisanimpressiveexampleofthis; seee.g.(Simpson;1999). Therefore, relativetospecificmathematicaltheoriesprooftheoreticalinvestigationscanhaveimportant philosophicalconsequences.Wewillcallsuchinvestigationslocal. Butofcourse,prooftheorydoesnotgivethefullpictureofaphilosophyofmathematics. Generalepistemological, ontological, sociologicaland historicalissues – which are treated in philosophy,philosophyof science and history of science – play an importantrole in the overall philosophical analysis of mathematics. In this thesis, however, we will only touch the epistemological and ontological questions in so far as is necessary in order to derive philosophicalconsequencesoftheprooftheoreticalinvestigations. We will apply different methods from proof theory in order to study constructivity of proofs and principles. Now, it is in itself a difficult question to point out what constitutes a constructiveproof. Below we will line up certain propertieswhich a constructivesystem shouldmeet. Butasitturnsout,thereisnounambiguouscharacterisationofconstructivism. Anyhow,adesirablepropertyofaconstructivetheoryiscertainlythefollowing: Ifwehave provedanexistentialstatement xA(x)thenwecaninfactexhibitanobjecttsuchthatAholds ∃ fort.1 Similarly,ifwehaveprovedadisjunctionA B,withnofreevariablesthenwecantell ∨ whichofthe two actuallyholds. We willnow givea simpleexampleof a non-constructive proof,duetoH.Friedman. 1Foraninteresting andinformative survey ofthe historical roots ofthese matters (whichat least goback to WhiteheadandRussell’sPrincipiaMathematicafrom1910–13)seeMancuso(n.d.). Inconnectionwiththispaper itshould,however,benotedthatitissomehowdifficulttofollowMancuso’sseparationofdirectandindirectnon- constructiveproofs,sincetheybothbytheendofthedayrestontertiumnondatur. 1 2 SettingandObjectofSurvey Theorem.e p isirrationalore+p isirrational. − Proof. Assumetheybotharerational. Sincethe sumoftworationalsisa rationalwe have that2eisrational.Contradiction. ⊣ Itisquestionablehowmuchinformationthisproofcontains. Surely,theproofdoesnot tell us which of the two disjuncts is irrational. A little surprising due to the simplicity of theproblem,nomethodorproofonthisproblemhasuntilnowshownuswhichofthe two actuallyis irrational. Theaboveproofonlytells usthatbothcannotberational, butitdoes notexhibitanumberofthetwosuchthatthisnumberistheone—clearlyitwouldhavebeen moresatisfyingifweknewthat. Therearemanyexamplesfromallovermathematicswhereexistencestatementsordis- junction statements are proved but the proofs do not provide us with any instances or any algorithmswhichmakeitpossibleforustoseewhythetheoremsaretrue—allweseeisthat itcannotbethecasethattheirnegationsaretrue. Thisiscertainlyconstructivelyunsatisfy- ing.2 Indirectproofsareingeneralnotconstructive. Butinlotsofcasestheyareorseemto betheonlypossible;asforinstanceintheaboveproof. At the entrance to the 20th century mathematics had its so-called foundational crisis, where fundamentalquestions appeared during the developmentof new mathematical theo- ries. AnexampleofsuchatheoryissettheoryasdevelopedbyGeorgCantor(1845–1918), whointroducedabeautifulandusefultheoryoftransfinitearithmetic—arithmeticoninfinite numbers.Anotherexampleisthedevelopmentofageneraltheoryoftopology,mainlybyFe- lixHausdorff(1868–1942),whereconceptsfromanalysissuchascontinuityweregeneralised toquiteabstractnotions.Manyofthesenewtheoriesandconceptsinvolvedinfinitetotalities and, moreover, inconsistencies and difficult open foundationalproblemswere found in the veryfirstformulationsofsettheory. Theparadoxof BertrandRussell (1872-1970)showed thatnotallpropertiescanbeusedfordefiningsetsandCantorposedthecontinuumhypoth- esis (CH) which asserts that there is no set with cardinality strictly greater than the set of naturalnumbersbut also strictly less than the set of real numbers. If one views the CH as a definitemathematicalproblemthenit hasremainedopen—ithasevenbeenshownthatit cannotbedecidedwithintheZFCformalisationofsettheory. Meanwhile,alsoprooftechniqueswerequestioned.In1888DavidHilbert(1862–1943) provedhisfamousbasistheoremininvarianttheorybynon-constructivemethodsbutexperts on the field – e.g. P. Gordan– called Hilbert’s proof “theology”.3 L.E.J. Brouwer (1881 – 1966),thefounderofintuitionism,bannedinhisthesisfrom1907indirectproofsandnon- constructivemethodsin general. Also HermannWeyl (1885 – 1955), a studentof Hilbert, becameunsatisfiedwithsettheoreticalfoundationsanddevelopedin(Weyl;1918)hiskind ofconstructivemathematics,whichlaterbecameknownunderthename“predicativemath- ematics”. Theso-called“Grundlagenstreit”wasjustabouttostart. Manyimportantmathe- maticianssuchasHilbert,BrouwerandWeyltookpartin it, and–aswe shallsee– sodid 2Itisalsoepistemologically problematictoassumethatanymathematicalstatementhasatruthvalue—alsoin caseswhereitcompletelyimpossibleforustogettoknowwhatthatvalueis. Wewillnot,however,dealwiththat problemhere,butseeforinstance(Jørgensen&Pedersen;2000). Also:Dummett(1977)arguesthattruthmustbe somethingwhichisaccessibletous. 3Moreonthisin(Rowe;2000). 1.1 Hilbert’sprogramandviewonmathematics 3 KurtGo¨del(1906–1978)andArendHeyting(1898–1980). Nowandthenthediscussions were rather emotional, but many importantnotions, insights and interpretationsarose from thisintenseperiod.Oneofthemwasprooftheory. 1.1 Hilbert’sprogramandviewonmathematics Hilberthadalongmathematicalcareerandwascontributinginnearlyallareasofmathemat- icssuchasalgebra,geometry,numbertheory,mathematicalphysics,mathematicallogic,etc. He had worked with the new mathematical theories and seen into the uncountable infinite thatCantor’ssettheorywasabout. Hehadseenandusedtheeffectivenessandeleganceof non-constructivemethods.Thus,“AusdemParadies,daßCantorunsgeschaffen,sollunsnie- mandvertreibenko¨nnen”,asHilbert(1926,170)putsitinhisfamousmetaphor. Therefore hedevelopedhisprogram. The program was at heart Kantian.4 It was formulated fully – by Hilbert and his co- workers, especially PaulBernays(1888–1977)– and putforth in the 1920s(Hilbert;1922, 1926). Thephilosophicalpositionbehindtheprogramisthefollowing. Mathematicscanbe splitintotwoparts: 1. Thefinitary(orcontentual)partofmathematics. 2. Theidealpartofmathematics. The finitary part of mathematics was meant to be that part of mathematics of which there couldbenodoubts:Finitaryreasoningaboutthenaturalnumbers,i.e.nounrestrictedquanti- fiers,andsimplereasoningonfinitegraphsandgeometricalfigures. Todaythereisageneral agreementon, thatwhatHilberttookto be the finitary partof (informal)mathematicswas, atleast, whatcanbe codedandjustified by primitiverecursivearithmetic(PRA), see (Tait; n.d.)foradiscussionofthis. Idealmathematicswastakentobethehighlyabstractelements ofmathematicsofwhichtheontologicalstatuswerenotimmediate. Examplesofsuchideal parts of mathematics could be (i) completed infinities, such as the set of natural numbers w , needed to develop a theory of the transfinite; (ii) the expansion of the real numbers by thecomplexnumberi=√ 1,whichenablesustoprovethefundamentaltheoremofalge- − bra; (iii) the ‘completion’of Euclidean geometryby an infinite line consisting of points at infinitythusobtainingprojectivegeometry,andso forth. Assuch, theidealelementscould not, according to Hilbert, be perceived by the senses. They had more the role of complet- ingthefinitaryandregulatingit—inthesame wayasinKant’stheoryofknowledgewhere ideas of reason regulate knowledge.5 The ideal elements were supposed to be abstract el- ements introduced in the development of mathematics in order to simplify, generalise and completealreadyexistingmathematics. Butinsuchaprocessnewmathematicswouldalso arise and this was how Hilbert saw the expansion and progression of mathematics. These 4DetailsonthisisprovidedinAndersen(2000). AndersenalsodiscussestheconflictsbetweenKant’sviewon mathematicsandHilbert’sviewonmathematics—inparticulartheroleoftheinfinite. Athemewewillnottouch here,butseealsoMajer(1993),Detlefsen(1995)andPosy(1995). 5Note, that Kant (1781/87) indeed hadtwo kinds of‘ideas’: (i)Theconstitutive useoftranscendental ideas causing paralogisms and antinomies ofpure reason (Kant; 1781/87, A338-A567); and (ii) the regulative use of generalideasofpurereason,asusedinscience(Kant;1781/87,A642-A704). 4 SettingandObjectofSurvey ideal elements of the mathematical method and universe were, of course, of indispensable value. However,Hilbertwasatthesame timeawareofthefactthatthisprogressivenessof the mathematicalmethodwas transcendingthe securedfinitary partsof mathematicsandit wasthereforeinneedofsomekindofjustification. Thisjustificationwouldconsistinshowing,mathematically,thattheidealpartofmathe- maticscouldnotprovenewpurelyfinitarystatements,i.e.couldnotprovefinitarystatements which were not provablealready in the finitary part of mathematics. This is where Hilbert connectedtheaxiomaticapproach,theideaofa‘prooftheory’,withhisgeneralviewonmath- ematicsasjustdescribed. Inmoderntechnicaltermsthegoaloftheprogramisdescribedby thefollowing. LetSbesomeformalsystemrepresentingmathematics—boththeidealandthe finitary part.AformulainthelanguageofSisafiniteobjectanditcanthereforebecodedeffectively by a natural number; proofs in S can likewise be coded. Thus, Proof (x,y) is a predicate S obtaining between two natural numbers x and y expressing that x encodes a proof in S of someformulahavingcodey. Asisstandard,letpAqbethecodeofA. (Theargumentbelow isinthegivenformalittlevague—thedetailsrelyonthespecificpropertiesoftheencoding; see (Smorynski;1977,sect. 2–4).) Intechnicaltermsthe essenceofHilbert’sprogramwas thatforanyfinitarystatementR(x)withxasfreevariablethereflectionprinciple Proof (u,pR(x˙)q) R(x) (1.1) S → shouldbeprovablebyfinitarymeans(wherex˙referstothex-thnumeral).However,itwould besufficienttoestablishconsistencyofSinafinitaryway. ForsupposeonehasaproofinS ofsomefinitarystatementR(x)containingonlyxasfreevariable,hence Proof (u,pR(x˙)q) (1.2) S wouldbefinitarilyprovable. However,ifR(x)werenottrueforallxthenforsomec, R(c) wouldbeprovablewithinS.Infactwewouldhave,duetoS completeness, ¬ 1 R(x) Proof (v ,p R(x˙)q), (1.3) S x ¬ → ¬ wherev dependsonwhichvaluextakes. If,ontheotherhand,wecouldproveconsistency x ofSbyfinitarymeanswewouldhave Proof (u,pR(x˙)q) Proof (v,p R(x˙)q) . (1.4) S S ¬ ∧ ¬ (cid:0) (cid:1) Now,(1.2),(1.3)togetherwith(1.4)impliesthat R(x)hasafinitaryproof,andsinceR(x) ¬¬ isafinitarystatementthisimpliesR(x). TheargumentismodernversionofHilbert’sargumentasfound,forinstance,in(Hilbert; 1927,78): AberauchwersichmitderWiderspruchsfreiheitnichbegnu¨gtundnochweiter- gehende Gewissensskrupel hat, muß die Bedeutung des Beweises der Wider- spruchsfreiheit anerkennen, na¨mlich als einer allgemeinen Methode aus Be- weisen fu¨r allgemeine Sa¨tze vom Charakter etwa des Fermatschen Satzes, die mitHilfedere -Funktiongefu¨hrtsind,finiteBeweisezugewinnen.6 6Thee operatorwasatechnicalinventionwithinprooftheory,andHilbertsawitasrepresentingahighlyideal aspectofmathematics.

Description:
2.1 A Hilbert system for weakly extensional Heyting arithmetic in all finite types 15 .. are often translated into English by intuitive knowledge. Now we will see that 'definition by cases' is also definable on the basis of the This displays the computational conflict between Markov's principle a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.