ebook img

Finite groups and fields [Lecture notes] PDF

130 Pages·2008·0.639 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Finite groups and fields [Lecture notes]

Finite groups and fields MA 5301 Fall 2008 Ju¨rgen Bierbrauer December 1, 2008 2 Contents I Introduction to Group Theory 7 1 Groups and symmetries 9 1.1 Definition of groups . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 Groups of symmetry . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Group tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Permutations and the symmetric groups . . . . . . . . . . . . 16 1.5 Quasigroups and latin squares . . . . . . . . . . . . . . . . . . 18 2 Subgroups and cosets 23 2.1 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Cosets and Lagrange’s theorem . . . . . . . . . . . . . . . . . 25 3 Some basic number theory 27 3.1 Divisors and the Euclidean algorithm . . . . . . . . . . . . . . 27 3.2 Congruences and the cyclic groups . . . . . . . . . . . . . . . 29 4 Generators and isomorphisms 33 4.1 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5 Direct products 35 5.1 Calculating in cyclic groups . . . . . . . . . . . . . . . . . . . 35 5.2 Direct products . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6 Factor groups and homomorphisms 39 6.1 Normal subgroups and factor groups . . . . . . . . . . . . . . 39 6.2 Group homomorphisms . . . . . . . . . . . . . . . . . . . . . . 41 3 4 CONTENTS 7 permutation representations 43 7.1 The signum and alternating groups . . . . . . . . . . . . . . . 43 7.2 Permutation representations . . . . . . . . . . . . . . . . . . . 46 7.3 Orbits and the orbit lemma . . . . . . . . . . . . . . . . . . . 47 7.4 Equivalence and automorphisms . . . . . . . . . . . . . . . . . 49 8 Dihedral groups and graphs 51 8.1 The dihedral groups . . . . . . . . . . . . . . . . . . . . . . . 51 8.2 The cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 9 Finite fields and linear groups 61 9.1 Prime fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9.2 Finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 9.3 Linear groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.4 Projective geometries . . . . . . . . . . . . . . . . . . . . . . . 69 10 Automorphisms, conjugation 73 10.1 Group automorphisms and conjugation . . . . . . . . . . . . . 73 10.2 Commutators . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 10.3 Characteristic subgroups . . . . . . . . . . . . . . . . . . . . . 75 10.4 Elementary-abelian groups . . . . . . . . . . . . . . . . . . . . 76 11 Permutation representations on subsets 77 11.1 The semidirect product . . . . . . . . . . . . . . . . . . . . . . 77 11.2 Permutation representations inside G . . . . . . . . . . . . . . 78 12 Conjugacy classes 81 12.1 Conjugacy classes . . . . . . . . . . . . . . . . . . . . . . . . . 81 12.2 Products of subgroups . . . . . . . . . . . . . . . . . . . . . . 82 13 The Sylow theorems 85 13.1 p-groups and Sylow’s theorems . . . . . . . . . . . . . . . . . . 85 13.2 Proof of the Sylow theorems . . . . . . . . . . . . . . . . . . . 86 13.3 Existence of complements . . . . . . . . . . . . . . . . . . . . 87 13.4 The structure of abelian groups . . . . . . . . . . . . . . . . . 89 14 Simple groups, composition series 91 14.1 Simple groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 14.2 Composition series . . . . . . . . . . . . . . . . . . . . . . . . 93 CONTENTS 5 14.3 Solvable and nilpotent groups . . . . . . . . . . . . . . . . . . 94 15 Transfer and fusion 95 16 Permutation groups 101 II Classical groups 107 17 The linear groups 109 17.1 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 17.2 PGL (q) and the projective line . . . . . . . . . . . . . . . . . 111 2 17.3 The simplicity of PSL (q). . . . . . . . . . . . . . . . . . . . . 116 n 17.4 The uniqueness of GL (2). . . . . . . . . . . . . . . . . . . . . 119 3 18 Some classical groups 123 18.1 Bilinear forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 18.2 The symplectic groups . . . . . . . . . . . . . . . . . . . . . . 124 18.3 The notion of a classical group . . . . . . . . . . . . . . . . . . 127 6 CONTENTS Part I Introduction to Group Theory 7 Chapter 1 Groups and symmetries 1.1 Definition of groups We start with a formal definition. 1.1 Definition. Let G be a set and let a product operation : G×G −→ G be defined. Then (G,·) is a group if the following hold: • g (g g ) = (g g )g for all g ∈ G (associativity). 1 2 3 1 2 3 i • There is an element e ∈ G (the neutral element), the letter e probably stands for Einheit) such that eg = ge = g for all g ∈ G. • For every g ∈ G there is an element g−1 ∈ G (the inverse element) such that gg−1 = g−1g = e. ´ The notion of a group goes back to Evariste Galois (1811-1832), a genius and political revolutionary, who died before reaching his twenty-first birth- day. For more on his life see Chapter 2 of Mark Ronan’s book Symmetry and the Monster [10]. We start by drawing some elementary consequences from the axioms. Observe that the neutral element is uniquely determined (if e′ is a neutral element, thenby definition ee′ = e = e′). The letter eprobably stands for the German word Einheit. We also write the neutral element as 1. The following cancellation laws hold in any group. 9 10 CHAPTER 1. GROUPS AND SYMMETRIES 1.2 Theorem (cancellation laws). Let G be a group. Then the following hold: • If ax = ay, then x = y. • If xa = ya, then x = y. Proof. Assume ax = ay. Multiply by the inverse a−1 from the left and use associativity: x = a−1ax = a−1ay = y. The same procedure works in the other case. As a consequence we see that every element a has a uniquely deter- mined inverse a−1 and that equations ax = b and xa = b have unique solutions x (x = a−1b in the first case, x = ba−1 in the second case). A group G is finite if the set G is finite. The cardinality of G is then called the order of the group. A group G is commutative (or abelian) if ab = ba for all a,b ∈ G. If ab = ba we also say that a and b commute. Here the term abelian is in honour of the Norwegian mathematician Niels Henrik Abel (1802-1829). It is one objective of this course to show that all sorts of algebraic, combi- natorial or geometric structures give rise to groups in a natural way. Group theory helps understanding the situation in all these seemingly diverse cases. Our first class of examples are groups of symmetry. 1.2 Groups of symmetry As a toy example consider a rectangular playing card. The symmetry group of the card is defined as the set of all permutations of the corners A,B,C,D which have the property that the card looks alike before and after the permutation is applied. Recall that a permutation of a set is a bijective (onto and one-to-one) mapping of the set. There are three types of pairs of corners in our card: those pairs connected by a long edge, those connected by a short edge and those not connected by an edge. We can reformulate our condition: a permutation of the corners {A,B,C,D} is a symmetry if and only if • the image of any long edge is a long edge,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.