ebook img

Finite Dimensional Lie Algebras and their Representations [Lecture notes] PDF

49 Pages·2012·0.437 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Finite Dimensional Lie Algebras and their Representations [Lecture notes]

Finite Dimensional Lie Algebras and their Representations Michaelmas 2006 ∗ Prof. I. Grojnowski ChrisAlmost† Theexamquestionswillconsistofasubsetofthein-classexercises. Contents Contents 1 1 MotivationandSomeDefinitions 2 1.1 LieGroupsandLieAlgebras . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Representationsofsl 7 2 2.1 Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Semi-SimpleLieAlgebras: StructureandClassification 12 3.1 SolvableandNilpotentLieAlgebras . . . . . . . . . . . . . . . . . . . 13 3.2 StructureTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 RootSystems 22 4.1 AbstractRootSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 DynkinDiagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 ExistenceandUniquenessofanAssociatedLieAlgebra. . . . . . . . 28 5 RepresentationTheory 30 5.1 TheoremoftheHighestWeight . . . . . . . . . . . . . . . . . . . . . . 30 5.2 ProofoftheTheoremoftheHighestWeight . . . . . . . . . . . . . . 33 5.3 WeylCharacterFormula . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6 Crystals 41 6.1 LittelmannPaths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Index 49 ∗[email protected][email protected] 1 2 LieAlgebras 1 Motivation and Some Definitions 1.1 Lie Groups and Lie Algebras This class is about the structure and representations of the so-called simple Lie groups SL ={A∈Mat |detA=1},SO ={A∈SL |AAT =I},Sp n n n n 2n and exactly five others. The only technology we will use is linear algebra. These groupsareslightlycomplicated,andtheyhaveatopologyonthem. Tostudythem wepasstoa“linearization,”theLiealgebra,andstudytheseinstead. 1.1.1Definition. A linear algebraic group is a subgroup of GL , for some n, de- n finedbypolynomialequationsinthematrixcoefficients. 1.1.2Example. Allofthegroupsmentionedsofararelinearalgebraicgroups,as isthecollectionofuppertriangularmatrices. This definition requires an embedding; it is desirable to come up with one whichdoesnot. Itturnsoutthelinearalgebraicgroupsareexactlytheaffinealge- braic groups, i.e. affine algebraic varieties such that multiplication and inversion areregularfunctions. 1.1.3Definition. TheLiealgebraassociatedwithG isg=T G,thetangentspace 1 toG attheidentity. 1.1.4Example. Let g=(cid:2)10(cid:3)+(cid:34)(cid:148)a b(cid:151),where(cid:34)2=0. Then 01 c d detg=(1+(cid:34)a)(1+(cid:34)d)−bc(cid:34)2=1+(cid:34)(a+d) Thereforedetg=1ifandonlyiftrg=0. We are working in the ring E =(cid:67)[(cid:34)]/(cid:34)2 =0 (the so-called dual numbers). If G⊆GL isalinearalgebraicgroup,wecanconsider n G(E)={A∈Mat (E)|AsatisfiestheequationsdefiningG}. n There is a natural map π : G(E) → G((cid:67)) induced by the ring homomorphism π:(cid:34)(cid:55)→0. 1.1.5Definition. G(E)isthetangentbundletoG,denoted TG,so g=T G=π−1(I)={A∈Mat (cid:67)|I+(cid:34)A∈G(E)}. 1 n 1.1.6Exercise. Show that this definition is equivalent to the usual definition of TG (say,fromdifferentialgeometry). 1.1.7Examples. 1. LetG=GL ={A∈Mat |A−1∈Mat }. Then n n n G(E)=GL ⊕Mat (cid:34)={A+B(cid:34)|A−1∈Mat }, n n n since(A+B(cid:34))(A−1−A−1BA−1(cid:34))=I. Therefore gl :=T GL =Mat ∼=(cid:82)n2. n 1 n n LieGroupsandLieAlgebras 3 2. As an exercise, show that det(I +X(cid:34)) = 1+tr(X)(cid:34). As a corollary, sl := n T SL ={X ∈Mat |tr(X)=0}. 1 n n 3. Let G = O = {A| ATA= I}. Then (I +X(cid:34))T(I +X(cid:34))= I +(XT +X)(cid:34), so n o :=T O ={X ∈Mat ((cid:67))|XT +X =0}. n 1 n n Remark. IfX ∈o thentrX =0(when2(cid:54)=0),sotheLiealgebraofO iscontained n n intheLiealgebraofSL . Alsonotethato =so ,sotheLiealgebradoesnotkeep n n n trackofwhetherthegroupisconnected. What structure on g is there coming from the group structure on G? Notice that (I+A(cid:34))(I+B(cid:34))=I+(A+B)(cid:34), so traditional multiplication only sees the vector space structure. Instead we use thecommutatormap G×G→G:(P,Q)(cid:55)→PQP−1Q−1, and consider it infinitesimally. If P = I+A(cid:34) andQ = I+Bδ, then P−1 = I−A(cid:34) andQ−1=I−Bδ,so PQP−1Q−1=I+(AB−BA)(cid:34)δ. Let[A,B]denotethemap(A,B)(cid:55)→AB−BA. 1.1.8Exercises. 1. Showthat(PQP−1Q−1)−1=QPQ−1P−1 implies[X,Y]=−[Y,X] 2. ShowthatthefactthatmultiplicationisassociativeinG implies [[X,Y],Z]+[[Y,Z],X]+[[Z,X],Y]=0 1.1.9Definition. LetK beafieldofcharacteristicnot2or3. ALiealgebragover K is a vector space over K equipped with a bilinear map [·,·]:Λ2g→g, the Lie bracket,suchthatforallX,Y,Z ∈G, 1. [X,Y]=−[Y,X](skew-symmetry);and 2. [[X,Y],Z]+[[Y,Z],X]+[[Z,X],Y]=0(Jacobiidentity). 1.1.10Example. In most of the following the Lie bracket is inherited from gl . n ThefollowingareLiealgebras. 1. sl ={A∈gl |trA=0}; n n 2. so ={A∈gl |AT +A=0}; n n 3. sp ={A∈gl |JATJ−1+A=0},where 2n 2n J =anti-diag(−1,...,−1,1,...,1). (cid:124) (cid:123)(cid:122) (cid:125) (cid:124) (cid:123)(cid:122) (cid:125) n n 4. Uppertriangularmatrices; 4 LieAlgebras 5. Strictlyuppertriangularmatrices; 6. Let V be any vector space and define the Lie bracket to be the zero map. ThisexampleisknownastheAbelianLiealgebra. 1.1.11Exercises. 1. Check directly that gl = Mat is a Lie algebra with Lie bracket [A,B] = n n AB−BA,andinfactthisworksforanyK-algebra; 2. Check that all of the above are truly subalgebras, i.e. vector subspaces and closedundertheLiebracket. 1.1.12Exercise. ClassifyallLiealgebrasgoverK withdim g≤3. K 1.2 Representations 1.2.1Definition. A Lie algebra homomorphism ϕ : g → g is a linear map such 1 2 that ϕ([x,y] )=[ϕ(x),ϕ(y)] . 1 2 ALiealgebrarepresentation(orsimplyrepresentation)ofaLiealgebragonavector spaceV isaLiealgebrahomomorphismϕ:g→gl . V 1.2.2Example. If g ⊆ gl then the inclusion is a representation of g on V. For V example,Kn isarepresentationofso ⊆gl . n n 1.2.3Definition. Let x ∈ganddefinetheadjointof x tobe adx :g→g: y (cid:55)→[x,y], alinearmapong. 1.2.4Lemma. The adjoint map ad : g → End(g) is linear and is in fact ad is a representationofgonitselfcalledtheadjointrepresentation. PROOF: Wemustcheckthatad[x,y]=adxady−adyadx. Foranyz, 0=[[x,y],z]+[[y,z],x]+[[z,x],y] Jacobiidentity 0=[[x,y],z]−[x,[y,z]]+[y,[x,z]] skew-symmetry [[x,y],z]=[x,[y,z]]−[y,[x,z]] soad[x,y](z)=(adxady−adyadx)(z)foreveryz,implyingtheresult. (cid:131) 1.2.5Definition. Thecenterofgis Z ={x ∈g|[x,y]=0forevery y ∈g}=ker(ad:g→End(g)). g Warning: the notation Z is not used in class (in fact, no notation for center is g usedinclass). Bythedefinitionofcenter,theadjointhomomorphismembedsgintogl ifand g onlyifghastrivialcenter. Representations 5 1.2.6Example. Theadjointhomomorphismmapsg=(cid:2)0K(cid:3)tozeroingl . 0 0 g 1.2.7Theorem(Ado). Any finite dimensional Lie algebra g has a finite dimen- sionalfaithfulrepresentation,i.e.g(cid:44)→gl forsomen. n PROOF: Omitted. (cid:131) 1.2.8Example. Recallthatsl ={(cid:2)a b (cid:3)}. Itsstandardbasisis 2 c −a (cid:26) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21)(cid:27) 0 1 0 0 1 0 e= ,f = ,h= . 0 0 1 0 0 −1 Showthat[h,e]=2e,[h,f]=−2f,and[e,f]=h. Whence,arepresentationof sl on(cid:67)n isatripleofmatrices E,H,F suchthat[H,E]=2E,[H,F]=−2F,and 2 [E,F]=H. Howdowefindsuchathing? 1.2.9Definition. If G isanalgebraicgroupthenanalgebraicrepresentationof G isagrouphomomorphismρ:G→GL definedbypolynomialequations. V We pull the same trick and substitute E = (cid:67)[(cid:34)]/(cid:34)2 for (cid:67) to get a homomor- phismofgroupsG(E)→GL (E). Asρ(I)=I, V ρ(I+A(cid:34))=I+(cid:34)(somefunctionofA). Callthisfunctiondρ,sothatρ(I+A(cid:34))=I+(cid:34)dρ(A),givingdρ:g→gl . V 1.2.10Exercises. 1. Showthatifρ:G→GL isagrouphomomorphismthendρ:g→gl isa V V Liealgebrahomomorphism. 2. Showthat dρ trulyisthedifferentialofρ attheidentitywhenρ isconsid- eredasasmoothmapbetweenmanifolds. We have a functor ρ (cid:55)→ dρ from the algebraic representations of G to the Lie algebra representations of g = T G. We will discuss this further, but first an 1 example. 1.2.11Example. Let G = SL , and let L(n)1 be the collection of homogeneous 2 polynomialsofdegreeninvariables x and y,sodim L(n)=n+1. Indeed,ithas K abasis{xn,xn−1y,...,xyn−1,yn}. NowGL actson L(n)via 2 ρn:GL2→GL(L(n))=GLn+1 by(ρ ((cid:148)a b(cid:151))f)(x,y)= f(ax+cy,bx+dy). Thenρ isthetrivialrepresenta- n c d 0 tion, ρ is the standard 2-dimensional representation (i.e. ρ is the identity map onGL1),andρ (cid:148)a b(cid:151)hasmatrix 1 2 2 c d   a2 ab b2 2ac ad+bc 2bd.   c2 cd d2 1L(n)=Γ((cid:80)1,(cid:79)(n))andH1((cid:80)1,(cid:79)(n))=0foralln≥0. 6 LieAlgebras Now of course SL < GL so the restriction is a representation of SL . To 2 2 2 computedρ (e)(xiyj)(recalle=(cid:2)01(cid:3))wecompute: n 00 ρ (1+(cid:34)e)xiyj =ρ (cid:2)1(cid:34)(cid:3)xiyj =xi((cid:34)x+y)j =xiyj+(cid:34)jxi+1yj−1 n n 01 Thereforedρ (e)(xiyj)= jxi+1yj−1. Similarly, n ρ (1+(cid:34)f)xiyj =ρ (cid:2)10(cid:3)xiyj =(x+(cid:34)y)iyj =xiyj+(cid:34)ixi−1yj+1 n n (cid:34) 1 and ρ (1+(cid:34)f)xiyj =ρ (cid:148)1+(cid:34) 0 (cid:151)xiyj =(1+(cid:34))ixi(1−(cid:34))jyj =xiyj+(cid:34)(i−j)xiyj, n n 0 1−(cid:34) so e·xiyj = jxi+1yj−1 f ·xiyj =ixi−1yj+1 h·xiyj =(i−j)xiyj. Uponcloserinspection,theseareoperatorsthatweknowandlove, ∂ ∂ ∂ ∂ dρ (e)=x , dρ (f)= y , dρ (h)=x −y . (1) n ∂ y n ∂x n ∂x ∂ y 1.2.12Exercises. 1. Checkdirectlythatdefiningtheactionof e, f,andhon L(2)by(1)givesa representationofsl . 2 2. CheckthatL(2)istheadjointrepresentationofsl (noticethattheyareboth 2 3-dimensional). 3. Ifthecharacteristicof K iszero,checkthat L(n)isanirreduciblerepresen- tationofsl ,andhenceofthegroupSL . 2 2 1.2.13Example. Let’s compare representations of G and representations of g when G = (cid:67)∗ (and hence g = (cid:67) with [x,y] = 0 for all x,y ∈ (cid:67)). Recall that theirreduciblealgebraicrepresentationsofG areonedimensional. z∈(cid:67)∗ actsas multiplication by zn (n ∈ (cid:90)). Moreover, any representation of G splits up into a finitedirectsumofonedimensionalrepresentations(“finiteFourierseries”). In contrast, a representation ρ : g → End(V) of g = (cid:67) on V is any matrix A = ρ(1) ∈ End(V) (ρ : λ (cid:55)→ λA). A subrepresentation W ⊆ V is just an A- stable subspace (so AW ⊆ W). Any linear transformation has an eigenvector, so there is always a 1-dimensional subrepresentation, which implies that all ir- reducible representations are the 1-dimensional ones. V breaks up into a direct sum of irreducibles (i.e. is completely reducible) if and only if A is diagonaliz- able. e.g. if A is the Jordan block of size n, then the invariant subspaces are 〈e 〉,〈e ,e 〉,...,〈e ,...,e 〉,anddoesnotbreakupintoadirectsumofsubspaces. 1 1 2 1 n Representationsuptoisomorphismofgl aregivenbythetheoryofJordannormal 1 forms. Representations of G and g look “really different” in this case. Even the irreducibles are different, since for G they are in 1-1 correspondence with (cid:90) (z (cid:55)→ zn), while for g they are in 1-1 correspondence with (cid:67) (λ (cid:55)→ “1 (cid:55)→ λ”). (Here(cid:90)(cid:44)→(cid:67):z(cid:55)→2πiz.) Representationsofsl 7 2 In contrast, the map from representations of G to representation of g is an equivalenceofcategoriesifG isasimplyconnectedsimplealgebraicgroup. Inpar- ticular, every representation of the Lie algebra sl is a direct sum of irreducibles, 2 andtheirreduciblesareexactly L(n). 2 Representations of sl 2 2.1 Classification From now on, all representations and Lie algebras are over (cid:67) unless otherwise specified. 2.1.1Theorem. 1. Thereisauniqueirreduciblerepresentationofsl ofdimension(n+1)for 2 everyn≥0. 2. Everyfinitedimensionalrepresentationofsl isisomorphictoadirectsum 2 ofirreduciblerepresentations. PROOF(FIRST PART): LetV bearepresentationofsl2. Define Vλ:={v∈V |hv=λv}, the λ-weight space. It is the space of eigenvectors of h with eigenvalue λ. For example, L(n)λ=(cid:67)xiyj ifi−j=λ,andinparticular L(n)n=(cid:67)xn. Supposethat v∈Vλ,andconsiderev. h(ev)=(he−eh+eh)v=[h,e]v+ehv=2ev+λev=(2+λ)ev Whence v∈Vλ ifandonlyifev∈Vλ+2. Similarly, v∈Vλ ifandonlyif fv∈Vλ−2. A highest weight vector of weight λ is an element of ker(e)∩Vλ, i.e. a v ∈ V suchthatev=0andhv=λv. Claim. If v is a highest weight vector then W = span{v,fv,f2v,...} is an sl - 2 invariantsubspaceofV. We need to show that W is stable by e,f,h. It is clear that fW ⊆ W. As hfkv=(λ−2k)fkv,itisclearthathW ⊆W. Bydefinition,ev=0,so efv=(ef −fe)v+fev=hv=λv∈W. Similarly, efk+1v=(ef −fe+fe)fkv =hfkv+fefkv =(λ−2k)fkv+k(λ−k+1)fkv byinduction =(k+1)(λ−k)fkv, so efkv = k(λ−k+1)fk−1v ∈ W, by induction, so eW ⊆ W and the claim is proved. 8 LieAlgebras Claim. If v is a highest weight vector of weight λ then λ ∈ {0,1,2,...} if V is finitedimensional. Indeed, the vectors fkv all lie in different eigenspaces of h, and hence are linearlyindependentiftheyarenon-zero. If V isfinitedimensionalthen fkv=0 forsomek. Letkbeminimalwiththisproperty. Then 0=efkv=k(λ−k+1)fk−1v, andk≥1,soλ=k−1∈{0,1,2,...}since fk−1v(cid:54)=0. Claim. ThereexistsahighestweightvectorifV isfinitedimensional. Letv∈V beanyeigenvectorforhwitheigenvalueλ(suchthingsexistbecause (cid:67) is algebraically closed). As before, v,ev,e2v,... are all eigenvectors for hwith eigenvalues λ,λ+2,λ+4,.... Hence they are linearly independent, so there is some k+1minimalsuchthat ek+1v =0. Clearly ekv ∈Vλ+2k isahighestweight vector,provingtheclaim. If V is irreducible and dim(cid:67)V = n+1 then there is a basis {v0,...,vn} such that hvi =(n−2i)vi, fvi =(cid:168)0vi+1 iiffii<=nn, evi =i(n−i+1)vi−1. Indeed,let v beahighestweightvectorwithweightλ∈{0,1,2,...}. Thestring 0 {v,fv,...,fλv}isasubrepresentationofV. AsV isirreducibleitmustbeallofV, soλ=dim(cid:67)V −1. Take vi = fiv. Thisprovesthefirstpartofthetheorem. (cid:131) 2.1.2Exercise. (cid:67)[x,y]isarepresentationofsl bytheformulaein1.2.11. Show 2 thatforλ,µ∈(cid:67), xλyµ(cid:67)[x,y]isalsoarepresentation,infinitedimensional,and analyzeitssubmodulestructure. PROOF(SECOND PART): Wewillshowthatstringsofdifferentlengths“donotinter- act,”andthenthatstringsofthesamelength“donotinteract.” LetV beafinitedimensionalrepresentationofsl . Let 2 Ω:=ef +fe+1h2∈End(V), 2 theCasimirofsl . AlsonoticethatΩ=(1h2+h)+2fe. 2 2 Claim. (1)Ωiscentral,i.e.Ωe=eΩ,Ωf = fΩ,andΩh=hΩ. Theproofofthisisanexercise. Forexample, Ωe=e(ef +fe+1h2) 2 =e(ef −fe)+2efe+1heh+1(eh−he)h 2 2 =eh+2efe+1heh−eh 2 =2efe+1heh 2 =(ef +fe+1h2)e 2 Classification 9 Claim. (2)IfV isanirreduciblerepresentationwithhighestweightnthenΩacts onV bymultiplicationby 1n2+n. 2 (ItfollowsfromSchur’sLemmathatifV isanirreduciblerepresentationofsl 2 then Ω acts on V as multiplication by a scalar.) Let v be a highest weight vector, sohv=nv andev=0,so Ωv=((1h2+h)+2fe)v=(1n2+n)v. 2 2 Hence Ω(fkv)= fk(Ωv)=(1n2+n)fkv, so Ω acts by multiplication by 1n2+n 2 2 since{v,fv,...,fnv}isabasisforV. Claim. (3) If L(n) and L(m) are both irreducible representations and Ω acts on ∼ thembythesamescalarωthenn=m(so L(n)=L(m))andω= 1n2+n. 2 Indeed, L(n) and L(m) are irreducible representations with highest weight n andm,respectively,sobythelastclaim 1n2+n=ω= 1m2+m. But f(x)= 1x2+ 2 2 2 x is a strictly increasing function for x > −1, so m = n and the representations areisomorphic. Let Vω = {v ∈ V | (Ω−ωI)dim(cid:67)Vv = 0} be the generalized eigenspace of Ω associatedwithω. TheJordandecompositionforΩimpliesthat V ∼=(cid:76) Vω (as ω vectorspaces). ω Claim. (4) Each V is a subrepresentation of V, i.e. the above is a direct sum decompositionasrepresentationsofsl . 2 Indeed,if x ∈sl and v∈Vω thensinceΩiscentral, 2 (Ω−ω)dim(cid:67)Vxv=x(Ω−ω)dim(cid:67)Vv=0. Aside: Forag-moduleW,acompositionseriesisasequenceofsubmodules 0=W <W <···<W =W 0 1 r suchthateachquotientmoduleWi/Wi−1isanirreducibleg-module. Forexample, withg=(cid:67)andW =(cid:67)2,actingas1(cid:55)→(cid:2)01(cid:3),then〈e 〉⊆〈e ,e 〉isacomposition 00 1 1 2 series (and this is the only one). If the action is instead 1(cid:55)→(cid:2)00(cid:3) then any line 00 in(cid:67)2 givesrisetoacompositionseries. RecallthatifW isfinitedimensionalthenithasacompositionseries,andthe subquotientsareuniqueuptopermutations. Claim. (5)If Vω (cid:54)=0thenω= 1n2+nforsome n,andallthesubquotientsofa compositionseriesfor Vω are L(2n), i.e. Vω isabunchofcopiesof L(n), possibly stucktogetherinacomplicatedway. Indeed,supposeW isanirreduciblesubrepresentationof Vω. ThenΩactson W asmultiplicationbyω,sinceωistheonlypossiblegeneralizedeigenvalueand Ω acts on irreducible representations as scalar mulitplication by Schur’s Lemma. ∼ Thusω= 1n2+nforsomenwithW =L(n),byclaim(3). Bythesamereasoning, Ωwillacto2nanyirreduciblesubrepresentationof Vω/W asmultiplicationbyω, soanysuchirreduciblesubrepresentationmustbe L(n), forthesame n. Whence everysubquotientinacompositionseriesisisomorphicto L(n). 10 LieAlgebras Tofinishtheproofwemustshowthateach Vω isadirectsumof L(n)’s. The keypointwillbetoshowthathis“diagonalizable.” Atthisstagewemayassume thatV =Vω. Noticethathactson V witheigenvalues{n,n−2,...,2−n,−n}. (Itisafact fromlinearalgebrathatifhactsonavectorspaceW andW(cid:48)≤W isanh-invariant (cid:48) subspacethentheeigenvaluesofhonW aretheeigenvaluesofhonW together with the eigenvalues of hon W/W(cid:48). The remark follows from this since V has a composition series with subquotients all isomorphic to L(n), and we know from thefirstpartthattheeigenvaluesofhon L(n)are{n,n−2,...,2−n,−n}.) Hence V =0if m∈/ {n,n−2,...,2−n,−n}. Itfollowsthathhasonlyonegeneralized m Whydoesthisfollow? eigenvalueonker(e),namelyn. Claim. hfk= fk(h−2k)andefn+1= fn+1e+(n+1)fn(h−n). Thefirstequationistrivial, andthesecondisprovedbyinductionasfollows. Clearlyef = fe+ef −fe= fe+h,and efn+1=(fe+ef −fe)fn = fn+1e+nfn(h−n+1)+fn(h−2n) byinduction = fn+1e+(n+1)fn(h−n). Claim. hactsasmultiplicationbynonker(e),andfurther,V =ker(e). n Indeed, if v ∈ Vn (so hv = nv) then ev ∈ Vn+2 = 0, so Vn ⊆ ker(e). For the converse,considerthesestatements: 1. If x ∈ ker(e), then (h−n)dimVx = 0 since n is the only generalized eigen- valueofhonker(e). 2. If x ∈ker(e),then(h−n+2k)dimVfkx = fk(h−n)dimVx =0bytheprevious claim. 3. If y ∈ker(e) and y (cid:54)=0 then fny (cid:54)=0. (Indeed, let (W) be a composition i series for V, as abo∼ve. Then there is i such that y ∈ Wi \Wi−1. Let ¯y = y +Wi ∈ Wi/Wi−1 = L(n). Then ¯y is a highest weight vector of L(n), so fn¯y (cid:54)=0,hence fny (cid:54)=0.) 4. fn+1x =0,as fn+1xisinthegeneralizedeigenspacewitheigenvalue−n−2, whichiszero. Hence 0=efn+1x =(n+1)fn(h−n)x+fn+1ex =(n+1)fn(h−n)x implying fn((h−n)x)=0,sobystatement3,(h−n)x =0,orhx =nx. Finally,chooseabasis{w1,...,w(cid:96)}ofVn=ker(e). Then span{w ,fw ,...,fnw }⊕span{w ,fw ,...,fnw }⊕... 1 1 1 2 2 2 ⊕span{w(cid:96),fw(cid:96),...,fnw(cid:96)} is a direct sum decomposition of V into subrepresentations, each isomorphic to L(n). (cid:131)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.