ebook img

Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations PDF

299 Pages·1996·3.809 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations

FINITE DIFFERENCE AND SPECTRAL METHODS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS Lloyd N(cid:2) Trefethen Cornell University Copyright (cid:0)c (cid:2)(cid:3)(cid:3)(cid:4) by Lloyd N(cid:5) Trefethen Note A trap that academics sometimes fall into is to begin a book and fail to (cid:6)nish it(cid:5) This has happened to me(cid:5) This book was intended to be published several years ago(cid:5) Alas(cid:7) two other projects jumped the queue (cid:8)Numerical Linear Algebra(cid:2) with David Bau(cid:7) to be published in (cid:2)(cid:3)(cid:3)(cid:9) by SIAM(cid:7) and Spectra and Pseudospectra(cid:2) to be completed thereafter(cid:10)(cid:5) At this point I do not know whether this numerical ODE(cid:11)PDE book will ever be properly (cid:6)nished(cid:5) This is a shame(cid:12)as people keep telling me(cid:5) Electronically by email(cid:7) and in person at conferences(cid:7) I am often asked (cid:13)when that PDE book is going to get done(cid:5)(cid:14) Anyone who has been in such a situation knows how (cid:15)attering such questions feel(cid:0)(cid:0)(cid:0) at (cid:6)rst(cid:5) The book is based on graduate courses taught to mathematicians and engineers since (cid:2)(cid:3)(cid:16)(cid:17) at the Courant Institute(cid:7) MIT(cid:7) and Cornell(cid:5) Successively more complete versions havebeen usedbymeinthese courseshalfadozentimes(cid:7) andbyahandfulofcolleagues at these universities and elsewhere(cid:5) Much of the book is quite polished(cid:7) especially the (cid:6)rst half(cid:7) and there are numerous exercises that have been tested in the classroom(cid:5) But there are many gaps too(cid:7) and undoubtedly a few errors(cid:5) I have reproduced here the version of the text I used most recently in class(cid:7) in the spring of (cid:2)(cid:3)(cid:3)(cid:18)(cid:5) I am proud of Chapter (cid:2)(cid:7) which I consider as clean an introduction as any to the classicaltheoryofthenumericalsolutionofODE(cid:5) Theothermainpartsofthebookare Chapter (cid:17)(cid:7) which emphasizes the crucial relationship between smoothness of a function and decay ofitsFouriertransform(cid:19) Chapters (cid:20) and(cid:18)(cid:7) which present the classicaltheory ofnumericalstabilityfor(cid:6)nitedi(cid:21)erenceapproximationstolinearPDE(cid:19)andChapters(cid:9) and (cid:16)(cid:7) which o(cid:21)er ahands(cid:22)on introductiontoFourierandChebyshev spectralmethods(cid:5) This book is largely linear(cid:7) and for that reason and others(cid:7) there is much more to the numerical solution of di(cid:21)erential equations than you will (cid:6)nd here(cid:5) On the other hand(cid:7) Chapters (cid:2)(cid:23)(cid:18) represent material that every numerical analyst should know(cid:5) These chapters alone can be the basis of an appealing course at the graduate level(cid:5) Please do not reproduce this text(cid:19) all rights are reserved(cid:5) Copies can be obtained for (cid:24)(cid:17)(cid:17) or (cid:3)(cid:2)(cid:25) each (cid:8)including shipping(cid:10) by contacting me directly(cid:5) Professors who are using the book in class may contact me to obtain solutions to most of the problems(cid:5) (cid:26)This is no longer true (cid:23) the book is freely available online at http(cid:2)(cid:3)(cid:3)web(cid:4)comlab(cid:4)ox(cid:4)ac(cid:4)uk(cid:3)oucl(cid:3)work(cid:3)nick(cid:4)trefethen(cid:3)pdetext(cid:4)html(cid:5)(cid:27) Nick Trefethen July (cid:2)(cid:3)(cid:3)(cid:4) Department of Computer Science and Center for Applied Mathematics Upson Hall(cid:2) Cornell University(cid:2) Ithaca(cid:2) NY (cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:2) USA (cid:8)(cid:9)(cid:10)(cid:11)(cid:12) (cid:13)(cid:6)(cid:6)(cid:14)(cid:4)(cid:13)(cid:13)(cid:13)(cid:2) fax (cid:8)(cid:9)(cid:10)(cid:11)(cid:12) (cid:13)(cid:6)(cid:6)(cid:14)(cid:4)(cid:4)(cid:13)(cid:5)(cid:2) LNT(cid:15)cs(cid:16)cornell(cid:16)edu CONTENTS TREFETHEN (cid:2)(cid:3)(cid:3)(cid:4) (cid:0) v Contents Preface viii Notation x (cid:2)(cid:5) Big(cid:22)O and related symbols (cid:2) (cid:3)(cid:5) Rounding errors and discretization errors (cid:3) (cid:0)(cid:2) Ordinary di(cid:3)erential equations (cid:4) (cid:2)(cid:5)(cid:2)(cid:5) Initial value problems (cid:5)(cid:6) (cid:2)(cid:5)(cid:17)(cid:5) Linear multistep formulas (cid:5)(cid:3) (cid:2)(cid:5)(cid:20)(cid:5) Accuracy and consistency (cid:2)(cid:5) (cid:2)(cid:5)(cid:18)(cid:5) Derivation of linear multistep formulas (cid:7)(cid:6) (cid:2)(cid:5)(cid:25)(cid:5) Stability (cid:8)(cid:6) (cid:2)(cid:5)(cid:4)(cid:5) Convergence and the Dahlquist Equivalence Theorem (cid:3)(cid:7) (cid:2)(cid:5)(cid:9)(cid:5) Stability regions (cid:3)(cid:4) (cid:2)(cid:5)(cid:16)(cid:5) Sti(cid:21)ness (cid:9)(cid:3) (cid:2)(cid:5)(cid:3)(cid:5) Runge(cid:22)Kutta methods (cid:10)(cid:3) (cid:2)(cid:5)(cid:2)(cid:28)(cid:5) Notes and references (cid:10)(cid:11) (cid:4)(cid:2) Fourier analysis (cid:4)(cid:6) (cid:17)(cid:5)(cid:2)(cid:5) The Fourier transform (cid:4)(cid:2) (cid:17)(cid:5)(cid:17)(cid:5) The semidiscrete Fourier transform (cid:11)(cid:2) (cid:17)(cid:5)(cid:20)(cid:5) Interpolation and sinc functions (cid:11)(cid:11) (cid:17)(cid:5)(cid:18)(cid:5) The discrete Fourier transform (cid:5)(cid:6)(cid:5) (cid:17)(cid:5)(cid:25)(cid:5) Vectors and multiple space dimensions (cid:5)(cid:6)(cid:9) (cid:17)(cid:5)(cid:4)(cid:5) Notes and references (cid:12) (cid:5)(cid:2) Finite di(cid:3)erence approximations (cid:5)(cid:6)(cid:4) (cid:20)(cid:5)(cid:2)(cid:5) Scalar model equations (cid:5)(cid:5)(cid:6) (cid:20)(cid:5)(cid:17)(cid:5) Finite di(cid:21)erence formulas (cid:5)(cid:5)(cid:3) (cid:20)(cid:5)(cid:20)(cid:5) Spatial di(cid:21)erence operators and the method of lines (cid:5)(cid:2)(cid:8) (cid:20)(cid:5)(cid:18)(cid:5) Implicit formulas and linear algebra (cid:5)(cid:7)(cid:8) (cid:20)(cid:5)(cid:25)(cid:5) Fourier analysis of (cid:6)nite di(cid:21)erence formulas (cid:5)(cid:7)(cid:9) (cid:20)(cid:5)(cid:4)(cid:5) Fourier analysis of vector and multistep formulas (cid:5)(cid:8)(cid:7) (cid:20)(cid:5)(cid:9)(cid:5) Notes and references (cid:12) CONTENTS TREFETHEN (cid:2)(cid:3)(cid:3)(cid:4) (cid:0) vi (cid:6)(cid:2) Accuracy(cid:7) stability(cid:7) and convergence (cid:5)(cid:8)(cid:9) (cid:18)(cid:5)(cid:2)(cid:5) An example (cid:5)(cid:8)(cid:4) (cid:18)(cid:5)(cid:17)(cid:5) The Lax Equivalence Theorem (cid:5)(cid:3)(cid:7) (cid:18)(cid:5)(cid:20)(cid:5) The CFL condition (cid:5)(cid:9)(cid:6) (cid:18)(cid:5)(cid:18)(cid:5) The von Neumann condition for scalar one(cid:22)step formulas (cid:5)(cid:9)(cid:9) (cid:18)(cid:5)(cid:25)(cid:5) Resolvents(cid:7) pseudospectra(cid:7) and the Kreiss matrix theorem (cid:5)(cid:10)(cid:8) (cid:18)(cid:5)(cid:4)(cid:5) The von Neumann condition for vector or multistep formulas (cid:5)(cid:4)(cid:7) (cid:18)(cid:5)(cid:9)(cid:5) Stability of the method of lines (cid:5)(cid:4)(cid:4) (cid:18)(cid:5)(cid:16)(cid:5) Notes and references (cid:12) (cid:8)(cid:2) Dissipation(cid:7) dispersion(cid:7) and group velocity (cid:5)(cid:11)(cid:5) (cid:25)(cid:5)(cid:2)(cid:5) Dispersion relations (cid:5)(cid:11)(cid:7) (cid:25)(cid:5)(cid:17)(cid:5) Dissipation (cid:2)(cid:6)(cid:5) (cid:25)(cid:5)(cid:20)(cid:5) Dispersion and group velocity (cid:2)(cid:6)(cid:7) (cid:25)(cid:5)(cid:18)(cid:5) Modi(cid:6)ed equations (cid:12) (cid:25)(cid:5)(cid:25)(cid:5) Stability in (cid:4)p norms (cid:12) (cid:25)(cid:5)(cid:4)(cid:5) Notes and references (cid:12) (cid:9)(cid:2) Boundary conditions (cid:2)(cid:5)(cid:11) (cid:4)(cid:5)(cid:2)(cid:5) Examples (cid:12) (cid:4)(cid:5)(cid:17)(cid:5) Scalar hyperbolic equations (cid:2)(cid:2)(cid:5) (cid:4)(cid:5)(cid:20)(cid:5) Systems of hyperbolic equations (cid:12) (cid:4)(cid:5)(cid:18)(cid:5) Absorbing boundary conditions (cid:2)(cid:2)(cid:3) (cid:4)(cid:5)(cid:25)(cid:5) Notes and references (cid:12) (cid:10)(cid:2) Fourier spectral methods (cid:2)(cid:7)(cid:2) (cid:9)(cid:5)(cid:2)(cid:5) An example (cid:2)(cid:7)(cid:3) (cid:9)(cid:5)(cid:17)(cid:5) Unbounded grids (cid:2)(cid:7)(cid:4) (cid:9)(cid:5)(cid:20)(cid:5) Periodic grids (cid:2)(cid:8)(cid:10) (cid:9)(cid:5)(cid:18)(cid:5) Stability (cid:2)(cid:3)(cid:10) (cid:9)(cid:5)(cid:25)(cid:5) Notes and references (cid:12) (cid:11)(cid:2) Chebyshev spectral methods (cid:2)(cid:9)(cid:6) (cid:16)(cid:5)(cid:2)(cid:5) Polynomial interpolation (cid:2)(cid:9)(cid:2) (cid:16)(cid:5)(cid:17)(cid:5) Chebyshev di(cid:21)erentiation matrices (cid:2)(cid:9)(cid:11) (cid:16)(cid:5)(cid:20)(cid:5) Chebyshev di(cid:21)erentiation by the FFT (cid:2)(cid:10)(cid:2) (cid:16)(cid:5)(cid:18)(cid:5) Boundary conditions (cid:12) (cid:16)(cid:5)(cid:25)(cid:5) Stability (cid:2)(cid:10)(cid:10) (cid:16)(cid:5)(cid:4)(cid:5) Some review problems (cid:2)(cid:11)(cid:4) (cid:16)(cid:5)(cid:9)(cid:5) Two (cid:6)nal problems (cid:7)(cid:6)(cid:6) (cid:16)(cid:5)(cid:16)(cid:5) Notes and references (cid:12) CONTENTS TREFETHEN (cid:2)(cid:3)(cid:3)(cid:4) (cid:0) vii (cid:12)(cid:2) Multigrid and other iterations (cid:12) (cid:3)(cid:5)(cid:2)(cid:5) Jacobi(cid:7) Gauss(cid:22)Seidel(cid:7) and SOR (cid:12) (cid:3)(cid:5)(cid:17)(cid:5) Conjugate gradients (cid:12) (cid:3)(cid:5)(cid:20)(cid:5) Nonsymmetric matrix iterations (cid:12) (cid:3)(cid:5)(cid:18)(cid:5) Preconditioning (cid:12) (cid:3)(cid:5)(cid:25)(cid:5) The multigrid idea (cid:12) (cid:3)(cid:5)(cid:4)(cid:5) Multigrid iterations and Fourier analysis (cid:12) (cid:3)(cid:5)(cid:9)(cid:5) Notes and references (cid:12) APPENDIX A(cid:5) Some formulas of complex analysis APP(cid:13)(cid:5) APPENDIX B(cid:5) Vector(cid:7) matrix(cid:7) and operator norms APP(cid:13)(cid:7) REFERENCES REFS(cid:13)(cid:5) PREFACE TREFETHEN (cid:2)(cid:3)(cid:3)(cid:4) (cid:0) viii Preface Many books have been written on numerical methods for partial di(cid:21)er(cid:22) ential equations(cid:7) ranging from the mathematical classic by Richtmyer and Morton to recent texts on computational (cid:15)uid dynamics(cid:5) But this is not an easy (cid:6)eld to set forth in a book(cid:5) It is too active and too large(cid:7) touching a be(cid:22) wildering variety of issues in mathematics(cid:7) physics(cid:7) engineering(cid:7) and computer science(cid:5) My goal has been to write an advanced textbook focused on basic prin(cid:22) ciples(cid:5) Two remarkably fruitful ideas pervade this (cid:6)eld(cid:29) numerical stability and Fourier analysis(cid:5) I want the reader to think at length about these and other fundamentals(cid:7) beginning with simple examples(cid:7) and build in the process a solid foundation for subsequent work on more realistic problems(cid:5) Numerical methods for partial di(cid:21)erential equations are a subject of subtlety and beauty(cid:7) but the appreciation of them may be lost if one views them too narrowly as tools to be hurried to application(cid:5) Thisisnotabookofpuremathematics(cid:5) Anumberoftheoremsareproved(cid:7) but my purpose is to present a set of ideas rather than a sequence of theorems(cid:5) The book should be accessible to mathematically inclined graduate students and practitioners in various (cid:6)elds of science and engineering(cid:7) so long as they arecomfortablewithFourieranalysis(cid:7) basicpartialdi(cid:21)erentialequations(cid:7) some numerical methods(cid:7) the elements of complex variables(cid:7) and linear algebra in(cid:22) cluding vector and matrix norms(cid:5) At MIT and Cornell(cid:7) successive drafts of this text have formed the basis of a large graduate course taught annually since (cid:2)(cid:3)(cid:16)(cid:25)(cid:5) One unusual feature of the book is that I have attempted to discuss the numerical solution of ordinary and partial di(cid:21)erential equations in parallel(cid:5) There are numerous ideas in common here(cid:7) well known to professionals(cid:7) but usually not stressed in textbooks(cid:5) In particular I have made extensive use of the elegant idea of stability regions in the complex plane(cid:5) Another unusual feature is that in a single volume(cid:7) this book treats spec(cid:22) tral as well as the more traditional (cid:6)nite di(cid:21)erence methods for discretization of partial di(cid:21)erential equations(cid:5) The solution of discrete equations by multi(cid:22) grid iterations(cid:7) the other most conspicuous development in this (cid:6)eld in the past twenty years(cid:7) is also introduced more brie(cid:15)y(cid:5) The unifying theme of this book is Fourier analysis(cid:5) To be sure(cid:7) it is well PREFACE TREFETHEN (cid:2)(cid:3)(cid:3)(cid:4) (cid:0) ix known thatFourieranalysis is connected with numerical methods(cid:7) but here we shall consider at least four of these connections in detail(cid:7) and point out analo(cid:22) gies between them(cid:29) stability analysis(cid:7) spectral methods(cid:7) iterative solutions of elliptic equations(cid:7) and multigrid methods(cid:5) Indeed(cid:7) a reasonably accurate title would have been (cid:13)Fourier Analysis and Numerical Methods for Partial Dif(cid:22) ferential Equations(cid:5)(cid:14) Partly because of this emphasis(cid:7) the ideas covered here are primarily linear(cid:19) this is by no means a textbook on computational (cid:15)uid dynamics(cid:5) But it should prepare the reader to read such books at high speed(cid:5) Besides these larger themes(cid:7) a number of smaller topics appear here that are not so often found outside research papers(cid:7) including(cid:29) (cid:0) Order stars for stability and accuracy analysis(cid:7) (cid:0) Modi(cid:4)ed equations for estimating discretization errors(cid:7) (cid:0) p Stability in (cid:4) norms(cid:2) (cid:0) Absorbing boundary conditions for wave calculations(cid:7) (cid:0) Stability analysis of non(cid:22)normal discretizations via pseudospectra(cid:2) (cid:0) Group velocity e(cid:21)ects and their connection with the stability of boundary conditions(cid:5) Like every author(cid:7) I have inevitably given greatest emphasis to those topics I know through my own work(cid:5) The reader will come to know my biases soon enough(cid:19) I hope he or she shares them(cid:5) One is that exercises are essential in any textbook(cid:7) even if the treatment is advanced(cid:5) (cid:8)The exercises here range from cookbook to philo(cid:22) sophical(cid:19) those marked with solid triangles require computer programming(cid:5)(cid:10) Another is that almost every idea can and should be illustrated graphically(cid:5) A third is that numerical methods should be studied at all levels(cid:7) from the most formal to the most practical(cid:5) This book emphasizes the formal aspects(cid:7) saying relatively little about practical details(cid:7) but the reader should forget at his or her peril that a vast amount of practical experience in numerical computation has accumulated over the years(cid:5) This experience is magni(cid:6)cently represented in a wealth of high(cid:22)quality mathematical software available around the world(cid:7) such asEISPACK(cid:7)LINPACK(cid:7)LAPACK(cid:7)ODEPACK(cid:7)andtheIMSLandNAG Boeing Fortran libraries(cid:7) not to mention such interactive systems as Matlab and Mathematica(cid:5)(cid:30) Half of every applied problem can and should be handled by o(cid:21)(cid:22)the(cid:22)shelf programs nowadays(cid:5) This book will tell you something about what those programs are doing(cid:7) and help you to think productively about the other half(cid:5) (cid:2)Foron(cid:3)lineacquisitionofnumericalsoftware(cid:4)everyreaderofthisbookshouldbesuretobefamiliar withthe(cid:5)Netlib(cid:6)facilitymaintainedatBellLaboratoriesandOakRidgeNationalLaboratory(cid:7) For information(cid:4) send thee(cid:3)mail message (cid:5)help(cid:6) to netlib(cid:8)research(cid:7)att(cid:7)com or netlib(cid:8)ornl(cid:7)gov(cid:7) NOTATION TREFETHEN (cid:2)(cid:3)(cid:3)(cid:4) (cid:0) x Notation R(cid:5)C (cid:5)Z real numbers(cid:7) complex numbers(cid:7) integers (cid:6) marks a number contaminated by rounding errors O(cid:5)o(cid:5)(cid:31)(cid:5) order relations analogous to (cid:2)(cid:7) (cid:7)(cid:7) (cid:3)(cid:7) ! x(cid:5)y(cid:5)t space and time variables (cid:8)(cid:5)(cid:9)(cid:5)(cid:10) x wave number(cid:7) y wave number(cid:7) frequency T initial(cid:22)value problem is posed for t(cid:4)(cid:26)(cid:28)(cid:5)T(cid:27) N dimension of system of equations d number of space dimensions u dependent variable (cid:8)scalar or N(cid:22)vector(cid:10) h(cid:5)k space and time step sizes h!"x(cid:7) k!"t i(cid:5)j(cid:5)n space and time indices (cid:4)(cid:5)r(cid:5)s integers de(cid:6)ning size of (cid:6)nite di(cid:21)erence stencil n vij numerical approximation to u(cid:8)ih(cid:5)jh(cid:5)nk(cid:10) u#(cid:5)v# Fourier transforms (cid:9) (cid:11)(cid:5)(cid:12) mesh ratios (cid:11)!k(cid:13)h(cid:7) (cid:12)!k (cid:13)h n n(cid:10)(cid:11) K(cid:5)Z space and time shift operators K(cid:29)vj (cid:5)(cid:6)vj(cid:10)(cid:11)(cid:5) Z(cid:29)v (cid:5)(cid:6)v i(cid:2)h i(cid:3)k (cid:14)(cid:5)z space and time ampli(cid:6)cation factors (cid:14)!e (cid:5) z!e (cid:0)(cid:11) "(cid:5)r forward and backward di(cid:21)erence operators "!K(cid:7)(cid:2)(cid:5) r!(cid:2)(cid:7)K (cid:15)(cid:8)z(cid:10)(cid:5)(cid:12)(cid:8)z(cid:10) characteristic polynomials for a linear multistep formula c(cid:5)cg phase and group velocities c!(cid:7)(cid:10)(cid:13)(cid:8)(cid:5)cg!(cid:7)d(cid:10)(cid:13)d(cid:8) $(cid:8)A(cid:10)(cid:5)$(cid:4)(cid:8)A(cid:10) spectrum and (cid:16)(cid:22)pseudospectrum of A (cid:2)AND(cid:3) TREFETHEN (cid:2)(cid:3)(cid:3)(cid:4) (cid:0) (cid:3) The followinglittlesections(cid:2)and(cid:3) containessentialbackgroundmaterial for the remainder of the text(cid:5) They are not chapters(cid:7) just tidbits(cid:5) Think of them as appetizers(cid:5) (cid:2)(cid:5) BIG(cid:2)OANDRELATEDSYMBOLS TREFETHEN (cid:2)(cid:3)(cid:3)(cid:4) (cid:0) (cid:13) (cid:0)(cid:2) Big(cid:3)O and related symbols How fast is an algorithm% How accurate are the results it produces% Answeringquestionsliketheserequiresestimatingoperationcountsanderrors(cid:7) and we need a convenient notation for doing so(cid:5) This book will use the six symbols o(cid:7) O(cid:7) (cid:31)(cid:7) (cid:7) (cid:8)(cid:7) and (cid:9)(cid:5) Four of these are standard throughout the mathematical sciences(cid:7) while (cid:31) and have recently become standard at least in theoretical computer science(cid:5)(cid:30) Here are the (cid:6)rst four de(cid:6)nitions(cid:5) They are written for functions f(cid:8)x(cid:10) and g(cid:8)x(cid:10) as x(cid:6)(cid:10)(cid:7) but analogous de(cid:6)nitions apply to other limits such as x(cid:6)(cid:28)(cid:5) O f(cid:8)x(cid:10)!O(cid:8)g(cid:8)x(cid:10)(cid:10) as x(cid:6)(cid:10) if there exist constants C (cid:17)(cid:28) and x(cid:12)(cid:17)(cid:28) such that jf(cid:8)x(cid:10)j(cid:2)Cg(cid:8)x(cid:10) for all x(cid:3)x(cid:12)(cid:5) If g(cid:8)x(cid:10)(cid:11)!(cid:28) this means jf(cid:8)x(cid:10)j(cid:13)g(cid:8)x(cid:10) is bounded from above for all su&ciently large x(cid:5) In words(cid:29) (cid:13)f is O of g(cid:5)(cid:14) o f(cid:8)x(cid:10)!o(cid:8)g(cid:8)x(cid:10)(cid:10) as x(cid:6)(cid:10) if for any constant C(cid:17)(cid:28) there exists a constant x(cid:12) (cid:17)(cid:28) such that jf(cid:8)x(cid:10)j(cid:2)Cg(cid:8)x(cid:10) for all x(cid:3)x(cid:12)(cid:5) If g(cid:8)x(cid:10)(cid:11)!(cid:28) this means jf(cid:8)x(cid:10)j(cid:13)g(cid:8)x(cid:10) approaches (cid:28) as x(cid:6)(cid:10)(cid:5) In words(cid:29) (cid:13)f is little(cid:22)O of g(cid:5)(cid:14) (cid:31) f(cid:8)x(cid:10)!(cid:31)(cid:8)g(cid:8)x(cid:10)(cid:10) as x(cid:6)(cid:10) if there exist constants C (cid:17)(cid:28) and x(cid:12)(cid:17)(cid:28) such that f(cid:8)x(cid:10) (cid:3) Cg(cid:8)x(cid:10) for all x (cid:3) x(cid:12)(cid:5) If g(cid:8)x(cid:10)(cid:11)!(cid:28) this means f(cid:8)x(cid:10)(cid:13)g(cid:8)x(cid:10) is bounded from below for all su&ciently large x(cid:5) In words(cid:29) (cid:13)f is omega of g(cid:5)(cid:14) (cid:2) f(cid:8)x(cid:10)! (cid:8)g(cid:8)x(cid:10)(cid:10) as x(cid:6)(cid:10) if there exist constants C(cid:5)C (cid:17)(cid:28) and x(cid:12) (cid:17)(cid:28) (cid:2) such that Cg(cid:8)x(cid:10)(cid:2)f(cid:8)x(cid:10)(cid:2)C g(cid:8)x(cid:10) for all x(cid:3)x(cid:12)(cid:5) If g(cid:8)x(cid:10)(cid:11)!(cid:28) this means f(cid:8)x(cid:10)(cid:13)g(cid:8)x(cid:10) is bounded from above and below(cid:5) In words(cid:29) (cid:13)f is theta of g(cid:5)(cid:14) The use of the symbols O(cid:7) o(cid:7) (cid:31)(cid:7) and is a bit illogical(cid:7) for properly speaking(cid:7) O(cid:8)g(cid:8)x(cid:10)(cid:10) for example is the set of all functions f(cid:8)x(cid:10) with a certain property(cid:19) but why then don’t we write f(cid:8)x(cid:10)(cid:4)O(cid:8)g(cid:8)x(cid:10)(cid:10)% The answer is sim(cid:22) ply that the traditional usage(cid:7) illogical or not(cid:7) is well established and very convenient(cid:5) The (cid:6)nal two de(cid:6)nitions are not so irregular(cid:29) (cid:2)Thanks to the delightful note (cid:5)Big omicron and big omega and big theta(cid:6) by D(cid:7) E(cid:7) Knuth(cid:4) ACM SIGACT News (cid:2)(cid:4) (cid:11)(cid:13)(cid:14)(cid:15)(cid:7)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.