Finite Difference and Finite Volume Methods for Wave-based Modelling of Room Acoustics Brian Hamilton DOCTOR OF PHILOSOPHY THE UNIVERSITY OF EDINBURGH 2016 Abstract Wave-basedmodelsofsoundpropagationcanbeusedtopredictandsynthesizesoundsastheywould beheardnaturallyinroomacousticenvironments. Thenumericalsimulationofsuchmodelswithtradi- tionaltime-steppinggrid-basedmethodscanbeanexpensiveprocess,duetothesheersizeoflistening environments(e.g.,auditoriumsandconcerthalls)andduetothetemporalresolutionrequiredbyaudio rates that resolve frequencies up to the limit of human hearing. Finite difference methods comprise a simplestartingpointforsuchsimulations,buttheyareknowntosufferfromapproximationerrorsthat maynecessitateexpensivegridrefinementsinordertoachievesufficientlevelsofaccuracy. Assuch,a significantamountofresearchhasgoneintodesigningfinitedifferencemethodsthatarehighlyaccurate whileremainingcomputationallyefficient. Theproblemofdesigningandusingaccuratefinitedifferenceschemesiscompoundedbythefact that room acoustics models require complex boundary conditions to model frequency-dependent wall impedancesovernon-trivialgeometries. Theimplementationofsuchboundaryconditionsinanumeri- callystablemannerhasbeenachallengeforsometime. Stableboundaryconditionsforfinitedifference roomacousticssimulationshavebeenformulatedinthepast,butgenerallytheyhaveonlybeenuseful in modelling trivial geometries (e.g., idealised shoebox halls). Finite volume methods have recently been shown to be a viable solution to the problem of complex boundary conditions over non-trivial geometries, andtheyalsoallowfortheuseofenergymethodsfornumericalstabilityanalyses. Finite volumemethodslendthemselvesnaturallytofullyunstructuredgridsandtheycansimplifytothetypes ofgridstypicallyusedinfinitedifferencemethods. Thisallowsforroomacousticssimulationmodels that balance the simplicity of finite difference methods for wave propagation in air with the detail of finitevolumemethodsforthemodellingofcomplexboundaries. Thisthesisisanexplorationofthesetwodistinct,yetrelated,approachestowave-basedroomacous- ticsimulations. Theoverarchingthemeinthisinvestigationisthebalancebetweenaccuracy,computa- tionalefficiency,andnumericalstability. Higher-orderandoptimisedschemesintwoandthreespatial dimensionsarederivedandcompared,towardsthegoaloffindingaccurateandefficientfinitedifference schemes.Numericalstabilityisanalysedusingfrequency-domainanalyses,aswellasenergytechniques whenever possible, allowing for stable and frequency-dependent boundary conditions appropriate for room acoustics modelling. Along the way, the use of non-Cartesian grids is investigated, geometric relationshipsbetweencertainfinitedifferenceandfinitevolumeschemesareexplored,andsomeprob- lems associated to staircasing effects at boundaries are considered. Also, models of sound absorption inairareincorporatedintothesenumericalschemes,usingphysicalparametersthatareappropriatefor roomacousticscenarios. i ii Declaration I declare that that this thesis was composed by myself, that the work herein is my own except where explicitlystatedotherwiseinthetext,andthatthisworkhasnotbeensubmittedforanyotherdegreeor professionalqualificationexceptasspecified. (BrianHamilton) iii iv Acknowledgements TherearemanypeoplethatImustthankforhelpandsupportthroughoutthisPhDprogramme. MydeepestthanksgotomymainPhDsupervisor:Dr. StefanBilbao—forguidancethroughoutall phasesofthiswork;foryourwisdominallthingsrelatedtoacoustics,signalprocessing,andnumerical methods;andalsoforyourgoodhumour. IwouldliketothankProf. LauriSaviojaforco-supervisingthisthesis,andforthemanywelcoming visitsIhavemadetoAaltoUniversity. ThanksalsotoJonathanBottsandJukkaSaarelmaforcollabo- rationsandfruitfuldiscussionsregardingallaspectsofnumericalwavesimulation. Thanks for the support from the friends I have made in Edinburgh over the years. Thanks to my colleaguesintheAcousticsandAudioGroupforencouragementalongtheway. Inparticular, special thankstoAlbertoandCraigforcollaborationsandforproofreadingportionsofthisthesis. Thanks to Prof. Dick Botteldooren, external examiner on this thesis, and Dr. James Hopgood, internalexaminer,forthoroughreviewsofthisthesisandformanyhelpfulsuggestionsandcorrections. This work would not have been possible without the financial support of the European Research Council, undergrantStG-2011-279068-NESS,andoftheNaturalSciencesandEngineeringResearch CouncilofCanada(NSERC)underthePostgraduateScholarships-Doctoral(PGS-D)Program. Lastly, thanks to myparents fora lifetimeof encouragement, and sincerethanks to Laurafor per- sonalsupportthroughoutthisarduousthesis-writingjourney. v vi Contents Abstract i Declaration iii Acknowledgements v 1 Introduction 1 1.1 Introductoryremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesisobjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Outlineofthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Maincontributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 RelatedPublications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Background 11 2.1 Roomacousticsfundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Linearandlosslesssoundpropagationinair . . . . . . . . . . . . . . . . . . . 11 2.1.2 Soundsourcesinfreespace . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.3 Boundaryconditionsmodellinglocallyreactivewalls . . . . . . . . . . . . . . 17 2.1.4 Soundabsorptioninair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.5 Roomimpulseresponses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2 Computationalmethodsforroomacousticsinthetime-domain . . . . . . . . . . . . . 33 2.2.1 Geometricmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.2 Finitedifferencemethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.3 Finiteelementandfinitevolumemethods . . . . . . . . . . . . . . . . . . . . 40 2.2.4 Boundaryelementmethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.5 Fouriermethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3 Roomacousticsmodellingin3-DwiththesimpleCartesianscheme 45 3.1 Thebasic3-Dscheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.2 Anequivalentstaggeredgridformulation . . . . . . . . . . . . . . . . . . . . 49 3.1.3 Energystabilityanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.1.4 Numericaldispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Boundaryconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 vii 3.2.2 Frequency-independentboundaryconditions . . . . . . . . . . . . . . . . . . 65 3.2.3 Boundaryconditionsforthestaggeredscheme . . . . . . . . . . . . . . . . . 75 3.2.4 Frequency-dependentboundaryconditions . . . . . . . . . . . . . . . . . . . 76 3.3 Incorporatingviscothermallosses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3.1 Energyanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3.2 Astaggeredfirst-orderviscousscheme . . . . . . . . . . . . . . . . . . . . . 85 3.3.3 Boundaryconditionsfortheviscothermalscheme . . . . . . . . . . . . . . . . 86 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4 Finitedifferenceschemesforthewaveequationinfreespace 91 4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.1.1 SamplingconsiderationsonCartesiangrids . . . . . . . . . . . . . . . . . . . 92 4.1.2 Explicittwo-stepfinitedifferenceschemesforthewaveequation. . . . . . . . 96 4.2 Finitedifferenceschemesforthe1-Dwaveequation . . . . . . . . . . . . . . . . . . 102 4.2.1 Thesimplestscheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.2.2 Parametrisedapproximationstothe1-DLaplacian . . . . . . . . . . . . . . . 104 4.2.3 Schemeswithhigh-orderspatialdifferencingin1-D . . . . . . . . . . . . . . 106 4.2.4 High-orderaccurateschemesusingmodifiedequations . . . . . . . . . . . . . 109 4.3 Cartesianschemesforthe2-Dwaveequation . . . . . . . . . . . . . . . . . . . . . . 113 4.3.1 Thesimplestschemein2-D . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.3.2 Parametrisedapproximationstothe2-DLaplacian . . . . . . . . . . . . . . . 115 4.3.3 Schemeswithhigh-orderspatialdifferencesin2-D . . . . . . . . . . . . . . . 118 4.3.4 Compact(K+1)-pointschemesin2-DwithK 8 . . . . . . . . . . . . . . 121 ≤ 4.3.5 High-order(K+1)-pointschemesin2-DwithK 24 . . . . . . . . . . . . 126 ≤ 4.3.6 Optimised(K+1)-pointschemesin2-DwithK 24. . . . . . . . . . . . . 129 ≤ 4.3.7 Comparingschemesforwidebandaccuracy . . . . . . . . . . . . . . . . . . . 130 4.3.8 Numericalexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.4 Hexagonalschemesforthe2-Dwaveequation. . . . . . . . . . . . . . . . . . . . . . 142 4.4.1 Thehexagonalgridandsamplingconsiderations . . . . . . . . . . . . . . . . 142 4.4.2 ParametrisedapproximationstotheLaplacian . . . . . . . . . . . . . . . . . . 145 4.4.3 Thesimpleseven-pointhexagonalscheme . . . . . . . . . . . . . . . . . . . . 147 4.4.4 Afamilyof(K+1)-pointcompactschemeswithK 12 . . . . . . . . . . . 148 ≤ 4.4.5 High-order(K+1)-pointschemeswithK 24 . . . . . . . . . . . . . . . . 150 ≤ 4.4.6 Numericalexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 4.5 Cartesianschemesforthe3-Dwaveequation . . . . . . . . . . . . . . . . . . . . . . 156 4.5.1 Parametrisedapproximationstothe3-DLaplacian . . . . . . . . . . . . . . . 156 4.5.2 Schemeswithhigh-orderspatialdifferencingin3-D . . . . . . . . . . . . . . 159 4.5.3 Compact(K+1)-pointschemesin3-DwithK 26 . . . . . . . . . . . . . 162 ≤ 4.5.4 High-orderandoptimised(K+1)-pointschemeswithK 62 . . . . . . . . 170 ≤ 4.5.5 Comparingschemesforwidebandaccuracy . . . . . . . . . . . . . . . . . . . 173 4.5.6 Numericalexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 4.6 Non-Cartesianschemesforthe3-Dwaveequation. . . . . . . . . . . . . . . . . . . . 181 4.6.1 Non-Cartesiangridsandsamplingconsiderations . . . . . . . . . . . . . . . . 181 4.6.2 DiscreteLaplaciansonFCCandBCCgrids . . . . . . . . . . . . . . . . . . . 186 4.6.3 Thesimplestnon-CartesianschemesonFCCandBCCgrids . . . . . . . . . . 188 viii
Description: