ebook img

Finite difference and finite volume methods for wave-based modelling of room acoustics PDF

356 Pages·2016·24.61 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Finite difference and finite volume methods for wave-based modelling of room acoustics

Finite Difference and Finite Volume Methods for Wave-based Modelling of Room Acoustics Brian Hamilton DOCTOR OF PHILOSOPHY THE UNIVERSITY OF EDINBURGH 2016 Abstract Wave-basedmodelsofsoundpropagationcanbeusedtopredictandsynthesizesoundsastheywould beheardnaturallyinroomacousticenvironments. Thenumericalsimulationofsuchmodelswithtradi- tionaltime-steppinggrid-basedmethodscanbeanexpensiveprocess,duetothesheersizeoflistening environments(e.g.,auditoriumsandconcerthalls)andduetothetemporalresolutionrequiredbyaudio rates that resolve frequencies up to the limit of human hearing. Finite difference methods comprise a simplestartingpointforsuchsimulations,buttheyareknowntosufferfromapproximationerrorsthat maynecessitateexpensivegridrefinementsinordertoachievesufficientlevelsofaccuracy. Assuch,a significantamountofresearchhasgoneintodesigningfinitedifferencemethodsthatarehighlyaccurate whileremainingcomputationallyefficient. Theproblemofdesigningandusingaccuratefinitedifferenceschemesiscompoundedbythefact that room acoustics models require complex boundary conditions to model frequency-dependent wall impedancesovernon-trivialgeometries. Theimplementationofsuchboundaryconditionsinanumeri- callystablemannerhasbeenachallengeforsometime. Stableboundaryconditionsforfinitedifference roomacousticssimulationshavebeenformulatedinthepast,butgenerallytheyhaveonlybeenuseful in modelling trivial geometries (e.g., idealised shoebox halls). Finite volume methods have recently been shown to be a viable solution to the problem of complex boundary conditions over non-trivial geometries, andtheyalsoallowfortheuseofenergymethodsfornumericalstabilityanalyses. Finite volumemethodslendthemselvesnaturallytofullyunstructuredgridsandtheycansimplifytothetypes ofgridstypicallyusedinfinitedifferencemethods. Thisallowsforroomacousticssimulationmodels that balance the simplicity of finite difference methods for wave propagation in air with the detail of finitevolumemethodsforthemodellingofcomplexboundaries. Thisthesisisanexplorationofthesetwodistinct,yetrelated,approachestowave-basedroomacous- ticsimulations. Theoverarchingthemeinthisinvestigationisthebalancebetweenaccuracy,computa- tionalefficiency,andnumericalstability. Higher-orderandoptimisedschemesintwoandthreespatial dimensionsarederivedandcompared,towardsthegoaloffindingaccurateandefficientfinitedifference schemes.Numericalstabilityisanalysedusingfrequency-domainanalyses,aswellasenergytechniques whenever possible, allowing for stable and frequency-dependent boundary conditions appropriate for room acoustics modelling. Along the way, the use of non-Cartesian grids is investigated, geometric relationshipsbetweencertainfinitedifferenceandfinitevolumeschemesareexplored,andsomeprob- lems associated to staircasing effects at boundaries are considered. Also, models of sound absorption inairareincorporatedintothesenumericalschemes,usingphysicalparametersthatareappropriatefor roomacousticscenarios. i ii Declaration I declare that that this thesis was composed by myself, that the work herein is my own except where explicitlystatedotherwiseinthetext,andthatthisworkhasnotbeensubmittedforanyotherdegreeor professionalqualificationexceptasspecified. (BrianHamilton) iii iv Acknowledgements TherearemanypeoplethatImustthankforhelpandsupportthroughoutthisPhDprogramme. MydeepestthanksgotomymainPhDsupervisor:Dr. StefanBilbao—forguidancethroughoutall phasesofthiswork;foryourwisdominallthingsrelatedtoacoustics,signalprocessing,andnumerical methods;andalsoforyourgoodhumour. IwouldliketothankProf. LauriSaviojaforco-supervisingthisthesis,andforthemanywelcoming visitsIhavemadetoAaltoUniversity. ThanksalsotoJonathanBottsandJukkaSaarelmaforcollabo- rationsandfruitfuldiscussionsregardingallaspectsofnumericalwavesimulation. Thanks for the support from the friends I have made in Edinburgh over the years. Thanks to my colleaguesintheAcousticsandAudioGroupforencouragementalongtheway. Inparticular, special thankstoAlbertoandCraigforcollaborationsandforproofreadingportionsofthisthesis. Thanks to Prof. Dick Botteldooren, external examiner on this thesis, and Dr. James Hopgood, internalexaminer,forthoroughreviewsofthisthesisandformanyhelpfulsuggestionsandcorrections. This work would not have been possible without the financial support of the European Research Council, undergrantStG-2011-279068-NESS,andoftheNaturalSciencesandEngineeringResearch CouncilofCanada(NSERC)underthePostgraduateScholarships-Doctoral(PGS-D)Program. Lastly, thanks to myparents fora lifetimeof encouragement, and sincerethanks to Laurafor per- sonalsupportthroughoutthisarduousthesis-writingjourney. v vi Contents Abstract i Declaration iii Acknowledgements v 1 Introduction 1 1.1 Introductoryremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesisobjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Outlineofthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Maincontributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 RelatedPublications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Background 11 2.1 Roomacousticsfundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Linearandlosslesssoundpropagationinair . . . . . . . . . . . . . . . . . . . 11 2.1.2 Soundsourcesinfreespace . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.3 Boundaryconditionsmodellinglocallyreactivewalls . . . . . . . . . . . . . . 17 2.1.4 Soundabsorptioninair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.5 Roomimpulseresponses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2 Computationalmethodsforroomacousticsinthetime-domain . . . . . . . . . . . . . 33 2.2.1 Geometricmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.2 Finitedifferencemethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.3 Finiteelementandfinitevolumemethods . . . . . . . . . . . . . . . . . . . . 40 2.2.4 Boundaryelementmethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.5 Fouriermethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3 Roomacousticsmodellingin3-DwiththesimpleCartesianscheme 45 3.1 Thebasic3-Dscheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.2 Anequivalentstaggeredgridformulation . . . . . . . . . . . . . . . . . . . . 49 3.1.3 Energystabilityanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.1.4 Numericaldispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Boundaryconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 vii 3.2.2 Frequency-independentboundaryconditions . . . . . . . . . . . . . . . . . . 65 3.2.3 Boundaryconditionsforthestaggeredscheme . . . . . . . . . . . . . . . . . 75 3.2.4 Frequency-dependentboundaryconditions . . . . . . . . . . . . . . . . . . . 76 3.3 Incorporatingviscothermallosses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3.1 Energyanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3.2 Astaggeredfirst-orderviscousscheme . . . . . . . . . . . . . . . . . . . . . 85 3.3.3 Boundaryconditionsfortheviscothermalscheme . . . . . . . . . . . . . . . . 86 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4 Finitedifferenceschemesforthewaveequationinfreespace 91 4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.1.1 SamplingconsiderationsonCartesiangrids . . . . . . . . . . . . . . . . . . . 92 4.1.2 Explicittwo-stepfinitedifferenceschemesforthewaveequation. . . . . . . . 96 4.2 Finitedifferenceschemesforthe1-Dwaveequation . . . . . . . . . . . . . . . . . . 102 4.2.1 Thesimplestscheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.2.2 Parametrisedapproximationstothe1-DLaplacian . . . . . . . . . . . . . . . 104 4.2.3 Schemeswithhigh-orderspatialdifferencingin1-D . . . . . . . . . . . . . . 106 4.2.4 High-orderaccurateschemesusingmodifiedequations . . . . . . . . . . . . . 109 4.3 Cartesianschemesforthe2-Dwaveequation . . . . . . . . . . . . . . . . . . . . . . 113 4.3.1 Thesimplestschemein2-D . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.3.2 Parametrisedapproximationstothe2-DLaplacian . . . . . . . . . . . . . . . 115 4.3.3 Schemeswithhigh-orderspatialdifferencesin2-D . . . . . . . . . . . . . . . 118 4.3.4 Compact(K+1)-pointschemesin2-DwithK 8 . . . . . . . . . . . . . . 121 ≤ 4.3.5 High-order(K+1)-pointschemesin2-DwithK 24 . . . . . . . . . . . . 126 ≤ 4.3.6 Optimised(K+1)-pointschemesin2-DwithK 24. . . . . . . . . . . . . 129 ≤ 4.3.7 Comparingschemesforwidebandaccuracy . . . . . . . . . . . . . . . . . . . 130 4.3.8 Numericalexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.4 Hexagonalschemesforthe2-Dwaveequation. . . . . . . . . . . . . . . . . . . . . . 142 4.4.1 Thehexagonalgridandsamplingconsiderations . . . . . . . . . . . . . . . . 142 4.4.2 ParametrisedapproximationstotheLaplacian . . . . . . . . . . . . . . . . . . 145 4.4.3 Thesimpleseven-pointhexagonalscheme . . . . . . . . . . . . . . . . . . . . 147 4.4.4 Afamilyof(K+1)-pointcompactschemeswithK 12 . . . . . . . . . . . 148 ≤ 4.4.5 High-order(K+1)-pointschemeswithK 24 . . . . . . . . . . . . . . . . 150 ≤ 4.4.6 Numericalexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 4.5 Cartesianschemesforthe3-Dwaveequation . . . . . . . . . . . . . . . . . . . . . . 156 4.5.1 Parametrisedapproximationstothe3-DLaplacian . . . . . . . . . . . . . . . 156 4.5.2 Schemeswithhigh-orderspatialdifferencingin3-D . . . . . . . . . . . . . . 159 4.5.3 Compact(K+1)-pointschemesin3-DwithK 26 . . . . . . . . . . . . . 162 ≤ 4.5.4 High-orderandoptimised(K+1)-pointschemeswithK 62 . . . . . . . . 170 ≤ 4.5.5 Comparingschemesforwidebandaccuracy . . . . . . . . . . . . . . . . . . . 173 4.5.6 Numericalexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 4.6 Non-Cartesianschemesforthe3-Dwaveequation. . . . . . . . . . . . . . . . . . . . 181 4.6.1 Non-Cartesiangridsandsamplingconsiderations . . . . . . . . . . . . . . . . 181 4.6.2 DiscreteLaplaciansonFCCandBCCgrids . . . . . . . . . . . . . . . . . . . 186 4.6.3 Thesimplestnon-CartesianschemesonFCCandBCCgrids . . . . . . . . . . 188 viii

Description:
that balance the simplicity of finite difference methods for wave propagation in air with the detail of . 2.2.3 Finite element and finite volume methods .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.