ebook img

Finite analytic method in flows and heat transfer PDF

353 Pages·2020·53.043 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Finite analytic method in flows and heat transfer

Finite Analytic Method in Flows and Heat Transfer 0 CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business 229x152 HB Taylor & Francis Taylor & Francis Group http://taylorandfrancis.com Finite Analytic Method in Flows and Heat Transfer Ching J en Chen Florida A&M University- Florida State University Richard Bernatz Luther College Kent D. Carlson University of Iowa Wanlai Lin Emerson Electric Corporation Published in 2000 by Taylor & Francis 29 West 35th Street New York, NY 10001 Published in Great Britain by Routledge 11 New Fetter Lane London EC4P 4EE Routledge is an imprint of the Taylor & Francis Group, an informa business Copyright © 2000 Taylor & Francis All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechan­ ical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or re­ trieval system, without permission in writing from the publisher. Library of Congress Cataloging-in-Publication Data Finite analytic method in flows and heat transfer / Ching Jen Chen ... [et al.). p. em. ISBN 1-56032-898-3 (alk. paper) 1. Fluid dynamics 2. Heat-Transmission-Mathematical models. I. Chen, C.J. (Ching Jen), 1936- QA911.F4385 2000 S32'.05-dc21 00-037721 CIP Contents Preface xvii I Introduction to Computational Fluid Dynamics 1 1 Introduction 4 1.1 Methods of Prediction 4 1.2 Numerical Methods. 5 1.3 Purpose and Outline 6 2 Governing Equations 7 2.1 Stokes-Fourier Postulates ........ . 7 2.2 The Navier-Stokes and Energy Equations 8 2.2.1 Compressible Flows ..... . 8 2.2.2 Incompressible Flows . . . . . . . . 9 2.2.3 Vorticity and Stream Function . . 9 2.2.4 Non-dimensional Governing Equations 10 2.3 Turbulent Navier-Stokes and Energy Equations 11 2.3.1 Averaging Processes ... . .. . 11 2.3.2 Averaged Turbulence Equations . 14 2.3.3 Turbulence Transport Equations 15 2.4 Turbulence Closure ........... . 18 2.4.1 First-Order Closure (Zero Equation Model) 18 2.4.2 Second-Order Closure . . . . . . . . . . . 19 2.5 Progress in Turbulence Modeling . . . . . . . . . . 21 2.5.1 Second-Order Turbulence Closure Models . 21 2.5.2 Modifications of Second-Order Closure Models 23 2.5.3 Numerical Considerations in the Near-Wall Region 24 2.5.4 Overview and Areas for Future Work . . . . . . . . 26 3 Classification of PDEs 28 3.1 Terminology . . . . . . . . . . . . . . . . . . . 28 3.2 First-Order Equations and Characteristics . . 28 3.3 Second-Order Equations and Characteristics . 32 vi CONTENTS 4 Well-Posed Problems 35 4.1 Well-Posed Problems . ... . . 35 4.1.1 Example of Existence 35 4.1.2 Example of Uniqueness 36 4.1.3 Example of Instability . 37 4.2 Existence and Physical Problems 37 4.3 Uniqueness and the Downstream Condition 39 4.4 Some Improperly Posed Problems . . . . . . 40 5 Numerical Methods 41 5.1 Grid Generation . . . ... . . 42 5.2 Numerical Methods . . . ... . . 42 5.2.1 Finite Difference Method 42 5.2.2 Finite Element Method 44 5.2.3 Finite Analytic Method 45 6 The Finite Difference Method 47 6.1 Discretization . . . . . . . . . . . . . . . . . 47 6.2 Central, Backward and Forward Differences 49 6.3 Unsteady, One-Dimensional Heat Equation 52 6.4 Error and Stability . 55 6.4.1 Error Types . .. . . . . . 55 6.4.2 Stability . . . . . . . . . . 55 6.5 Two-Dimensional Heat Equation 56 6.6 Exercises for Part I .... . .. . 58 II The Finite Analytic Method 62 7 Basic Principles 65 7.1 The Transport Equation 65 7.2 FA FUndamentals .. . . 66 8 The One-Dimensional Case 69 8.1 The One-Dimensional Transport Equation . 69 8.2 Finite Analytic Solution . . . . . . . 70 8.3 Hybrid Finite Analytic Solution .. . 72 8.4 FA and FD Coefficient Comparison . 72 8.5 Burgers' Equation ... ...... . 76 9 The Two-Dimensional Case 78 9.1 The Two-Dimensional Transport Equation. 78 9.2 FA Solution on Uniform Grids . . . 80 9.3 The Poisson Equation .. ... . . 85 9.4 FA Solution for Nonuniform Grids 85 9.5 Heat Transfer in a Driven Cavity . 88 CONTENTS vii 10 The Three-Dimensional Case 93 10.1 Three-Dimensional Transport Equation 93 10.2 FA 27-Point Solution for Uniform Grids 96 10.3 FA Formulation on Nonuniform Grids . 100 10.4 The 19-Point FA Formula .. .. . .. . 105 10.5 Analysis of 19- and 27-point FA Schemes . 108 10.6 11-Point FA Formula . .... . 111 10.7 FA Solution of 3D Cavity Flow 113 11 Stability and Convergence 118 11.1 Three Operators . . . . . 118 11.2 Consistency of the FA Solution 119 11.3 Stability and Convergence . 125 11.3.1 Stability ... 125 11.3.2 Convergence 129 12 Hyperbolic PDEs 130 12.1 Hyperbolic Equations 130 12.2 Method of Characteristics 131 12.3 FA Method .. . ... . . 133 12.4 Supersonic Flow in a 2D Channel . 136 13 Explicit Finite Analytic Method 141 13.1 Convection Dominated Transport Equation 141 13.2 Analytic Solution . . . . . . . . . . . . . . . 143 13.3 FA Solution . . . . . . . . . . . . . . . . . . 143 13.3.1 Approximating the Initial Condition 145 13.3.2 Explicit Finite Analytic Scheme 146 13.4 EFAS Solution for a Single Equation 147 13.5 Exercises for Part II . . . . . . . . . . . 150 III Numerical Grid Generation 152 14 Introduction to Grid Generation 155 14.1 Objectives and Principles . . . 156 14.2 Mathematical Framework .. . 157 14.3 Standard Coordinate Systems . 159 14.4 Algebraic Methods . .. . . . . 161 14.4.1 Bilinear Map .... . . 161 14.4.2 Transfinite Interpolation . 162 14.5 Differential Coordinate Systems . 163 14.5.1 Conformal Maps ..... 164 14.5.2 Elliptic Grid Generation . 166 14.5.3 Other Differential Methods 166 14.6 Adaptive and Multilevel Methods . 167 viii CONTENTS 14.6.1 Adaptive Grids .. . 168 14.6.2 Multilevel Methods . 169 15 Elliptic Grid Generation 173 15.1 Harmonic Functions . . . . . . . . . . . . 173 15.1.1 Average Value ... ... . . . . . 174 15.1.2 Maximum and Minimum Principle 175 15.2 Simple Elliptic Generator 176 15.3 Winslow Generator .... . 178 15.4 Poisson Generator .... . 179 15.4.1 Qualitative Analysis 180 15.4.2 Control Functions . 182 e 16 Equations in and TJ Coordinates 187 16.1 Derivative Transformations . . . 187 16.2 Transformed Equations . .. . . 189 16.2.1 The Continuity Equation 189 16.2.2 The Transport Equation . 190 17 Diagonal Cartesian Method 192 17.1 Current Methods . . . . . . . . . . . . . . . . 192 17.2 Diagonal Cartesian Method . ........ . 194 17.2.1 Automatic Boundary Approximation . 194 17.2.2 Boundary Point Selection 195 17.3 Accuracy Considerations . . .... . 198 17.3.1 Relative Length Error E1 . . 198 17.3.2 Average Normal Distance E2 200 17.4 Two-dimensional Example . . . . . . 201 17.5 Three-dimensional Approximations . 201 17.6 Three-dimensional Example .. 201 18 FA Method on DC Coordinates 205 18.1 5-Point FA Scheme for Uniform Grids 205 18.2 5-Point FA Scheme for Nonuniform Grids . 209 18.3 Three-Dimensional Case 211 18.4 Exercises for Part III . . . . . . . . . . . . . 214 IV Computational Considerations 216 19 Velocity, Pressure and Staggered Grids 219 19.1 The Checkerboard Problem 219 19.2 The SIMPLE Algorithm . 220 19.3 The SIMPLEC Algorithm 225 19.4 The SIMPLER Algorithm 226 19.5 The PISO Algorithm . . . . ... . 227 CONTENTS ix 19.6 Convergence Criteria ...... . 229 19.7 Performance Summary ..... . 230 20 Nonstaggered Grid Methods 231 20.1 Pressure Weighted Interpolation Method .. . 231 20.2 Poisson Pressure Equation Method . . . . . 236 20.3 Momentum Weighted Interpolation Method 237 20.4 Method Comparisons . . . . . . . . . . . . . 238 21 Boundary Conditions 240 21.1 Staggered Grids . .. 240 21.2 Nonstaggered Grids 241 21.2.1 Cell-Vertex Nodes 241 21.2.2 Cell-Centered Nodes . . . 244 21.2.3 PPEM . . . . . . . . . . 245 21.2.4 Ghost Boundary Nodes . 246 21.3 2D Diagonal Cartesian Method . 248 21.3.1 Ghost Boundary Node Method 248 21.3.2 Diagonal Surface Nodes . . . . 248 21.3.3 Velocity Boundary Conditions . 254 21.4 Exercises for Part IV . . . . . . . . . . 255 V Applications of the FA Method 256 22 Thrbulent Flows 259 22.1 Laminar Applications ..... 260 22.2 Fluid Dynamics of Disc Valves 260 22.3 Mathematical Model . .... 260 22.3.1 Governing Equations . 260 22.3.2 Boundary Conditions 261 22.4 Results and Discussion .. 261 23 Thrbulent Heat Transfer 267 23.1 Laminar Applications . 267 23.2 Two-Dimensional Sea Breeze 268 23.2.1 Introduction .. 268 23.3 Mathematical Model . . . . . 270 23.3.1 Model Equations . . . 270 23.3.2 Initial and Boundary Conditions 271 23.4 Results and Discussion . . . . . . . . . . . . . 272 24 Complex Domain Flows 276 24.1 Unsaturated Porous Media 276 24.2 Mathematical Model . . . 277 24.3 Results and Discussion . . . . . . . . . . 279

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.