Odonatologica35(2):187-192 June I,2006 SHORTCOMMUNICATIONS Fine-structural changesin theeggchorion ofBradinopyga geminata(Rambur) inducedby papermill effluent (Anisoptera: Libellulidae) R.J.Andrew¹*,L.Kodhe² andS.S.Kurup² 1DepartmentofZoology,HislopCollege,Civillines,Nagpur-440001 (MS),India *[email protected] 2 DepartmentofZoology,SSESAs ScienceCollege,CongressNagar,Nagpur-440012 (MS),India ReceivedMay2,2004 /RevisedandAcceptedNovember 1,2005 Theeggchorion ofthedragonflyB.geminataundergoesmajorstructuralchanges when incubated in papermill effluent.Theexochorionbecomes blemished,marred andperforated. Itbunches intoagranularcondition and loosesitsjelly-likeoriginal identity.The endochorion developscracks and ispittedwith holes. The hexagonal demarcations oftheendochorionplatesareobliterated andreplacedbyanetworkof angularsurfacereticulations. Themicropylar stalk and thecircularbasal ridge dis- solve anddistortthemicropylarapparatus. INTRODUCTION Theinsecteggchorionserves variousfunctionssuchas protectionfrompatho- gens, predators andmechanical stressand fromenvironmentalhazards such as desiccationandhydration. Itallowsspermentry andprovides elasticityforeasy oviposition. Later, itprotects thegrowing embryo, ensuressufficientoxygenand carbondioxideexchange andhelpsinliberationofthelarva.Theeggchorion, in insects, is thereforeanextensively modifieddynamic structure withmajorfunc- tionalsignificance (HINTON, 1981;MARGARITIS, 1985). Theenvironmentalpollution dueto smallandmediumscale pulp andpaper industriesismultidimensionalcausingseriousproblems,notonly tothelandmass fertilitybutalsoto thenaturalflora,faunaaswellasaquaticbodies(KSIBI etah, 2003). Thisresults inserious threatstoaquatic organisms(GHOSE &KONAR, 1980;RAO&NAADHAKUMAR,1982;CHANDRASEKARAN etal„ 1989) 188 R.J.Andrew,L,Kodhe&S.S.Kurup including dragonflies(SUBRAMAN1AN&VARADARAJ,1993;VARADARAJ etal., 1993; SUBRAMANIAN & MURALIDHARAN, 1999). A reviewofliteraturereveals thatvery fewattempts havebeen madeto study theeffect of paper milleffluents(PME) on dragonflies and these reports are mostly related to histopathological, histochemicalandbiochemicalparameters (SUBRAMANIAN & VARADARAJ, 1993; VARADARAJ etal., 1993).Fur- thermore, informationon the eggs of dragonflies has mostly beenundertaken withrespect to theeffectof differentpH, temperatureandoxygen on hatching. (PUNZO, 1988;SOEFFING, 1990;MILLER, 1992). Thefinestructureof the ©donatechorionhasbeeninvestigated mostly tounderstandthe“structure-func- tion”relationship withrespect to theprocess offertilizationandoviposition [see ANDREW(2002) fordetailreferences]. No majorattempts haveyetbeenmade to study theeffectofPMEontheeggchorionofaquatic fauna.Thepresentin- vestigation has thereforebeenundertakento studytheeffectofPMEonthefine structureoftheeggchorionofthe dragonfly, Bradinopyga geminata. MATERIALANDMETHODS Theegg-layingfemaleswerecollectednearsmalllocalpondsatNagpur,duringthepost-monsoon periods(September-November)of 1999-2000.Eggdumpingwasinitiated bypassingathin needle throughthe thoraxorby holdingthe wingsflat and dippingthe abdominal tipinwatertubes and petri-dishes(ANDREW&TEMBHARE, 1996;ANDREW,2002). Theeggspassed outofthe genitalopeningand accumulatedonthe sub-genitalplate.Theeggs weredivided intotwogroups. Thefirstgroupofeggswasplacedinpetri-dishescontainingpondwa- terwhilethesecondgroupwasplacedinpaper mill effluent(PME)procuredformthelocalindustrial area(MIDC,Hingna,NagpurDistrict). Afterfivedays,theeggsofboth thegroups wereprepared forscanningelectronmicroscopy (SEM).Eggsweredehydratedinethanol,transferred toacetone, air-dried,mountedonstubs,coatedinagold-coatingunit(E-5200)andexaminedunderastereoscan 250MK IICambridgeScanningElectron Microscope. OBSERVATIONS Theeggsincubatedinpondwaterhatchedin8-12daysandhadonly 8%mortal- ity whereas 100%percent mortalitywas foundintheeggs incubatedinPME. Various structural disintegration of theegg chorion with respect to the exo- chorion, endochorionandmicropylarapparatuswas observedin thepapermill effluenttreatedeggs(Figs 1-4).Theexochorionbecameblemished, marredand perforated.Itbunchedintogranularconditionandlostitsjelly-likeoriginal iden- tity. Theendochorion developed cracks and itwas pitted withholes.Thehexa- gonal demarcationsoftheendochorionplates wereobliteratedandreplaced by anetworkofangularsurfacereticulations. Themicropylarstalk andthecircular basalridgedissolved anddistortedthemicropylar apparatus. Acomparative account of this degeneration is given inTableI. Fine-structure ofegg chorion in Bradinopygageminala 189 Table1 Fine-structural changesinthechorion componentsoftheeggsofBradinopygageminataincubated inpaper mill effluent(PME) Eggchorion Dry-egg* Wet-egg* PME-incubated egg Components Exochorion (EX) Thin,unsculptured, Thickunsculptured, Jelly-like,spongynature uniformlayer jelly-like,spongy lost.Itbunchesintosmall layer(Fig.1) lobules orgranules,be- comesdissolvedinplaces, detachesfromtheEN, andexhibits agrainyor sandytexture(Fig.2) Endochorion (EN) Whitetopalecream; Dark brown,sculptured Thehexagonaldemarca- composedofhexa- with regularhexagonal tionislost;thesurface gonalplates plates(Fig. 1) developscracksandis pittedwith tinycircular holes(Fig.2); some crackedpieces breakoff fromthesurface Micropylar Triangularwith a Asindrycondition TheMAsinks, and Apparatus(MA) circularbase;stalk acquiresagranulartex- possessesapairof ture; thestalk disintegra- subapicalcircular tes,whilethecircular micropylarorifices. ridgeisobliterated (Fig.4) Differentiated from theEXbyathincir- cular ridge(Fig.3) *ANDREW&TEMBHARE(1996) DISCUSSION Protection against environmental hazards during embryogenesis is the main functionoftheeggchorionafteroviposition. Thisisfulfilledbythephysical-me- chanicalproperties of theegg.Thisproperty isthe consequenceofthe chemical stabilityofthechorion,which dependsuponthecross-linksexisting betweenthe componentmolecules(MARGARITIS, 1985). Theinsecteggchorionispredominantly composed ofprotein (>95%)(PETRI etal., 1976)alongwithtracesoforganic(carbohydrates, lipids)andinorganic(Cal- cium, Iron,Ca+2 Na+ K+) ions/atoms/molecules(REIGER etal., 1980, 1982). , , Thecross-linksbetweenthechorionproteins aremainlydisulphide bridges, dity- rosine-trityrosine bondsandsclerotization through quininetanning, whichmay occur separatelyorincombination(KAWASAKIetal., 1972;PETRIetal., 1976). 190 R.J.Andrew,L.Kodhe&S.S.Kurup Inthe dragonflychorion, disulphidebridgesare themajor cross-linkbetween theprotein molecules(KAWASAKI etal., 1974).Thepresentinvestigation indi- cates thatthepapermilleffluentcontainscompounds thatdenaturethechorion protein, probablyby breaking these di-sulphide bridges. Thevariationin the in- tensity of denaturationbetween theexochorionandendochorionindicates that the exochorionproteins are mostly linkedwithdi-sulphide bridges, sincethe in- tensityofproteindenaturationbythePMEismoresevereintheouterexochorion Figs 1-4.Normal and papermill effluent(PME)treated eggs ofBradinopygageminata (Scalebar =5pm): (1)SEMoffracturedchorion toshow thick exochorion (thickarrow)and endochorion composed ofhexagonalplates(thinarrow); - (2)PMEtreated chorionshowsgranular(blackar- rowhead)lobulated (whitethick arrow)exochorion,whiletheendochorioniscracked (whitearrow head)and pittedwith circularholes(thinarrow); —(3)Normal micropylarapparatus; — (4)PME treatedmicropylarapparatuswithdisintegratingstalkand orifice(arrow). Fine-structure ofeggchorion in Bradinopygageminata 191 thentheinnerendochorion.Variationintheactionofdenaturationbetweenthese two layersmayalsobebecauseofthedifferenceinthephysical nature ofthetwo chorions, the outerexochorion being spongyand the innerendochorionbeing composed ofcompacthexagonal plates (ANDREW & TEMBHARE, 1996). ACKNOWLEDGEMENT RJA wishes to thank the UGC for supportunder the minor research project, F. 23-382/99 (WRO). REFERENCES ANDREW, R.J., 2002.Egg chorionic ultrastructureof the dragonflyTramea Virginia (Rambur) (Anisoptera:Libellulidae).Odonatologica31: 171-175. ANDREW, R.J.& D.B.TEMBHARE, 1996. Surface ultrastructureofthe eggchorion ofBradi- nopygageminata(Rambur)andRhyothemisvariegatavariegata(Linn.)(Anisoptera:Libel- lulidae). Fraseria(N.S.)3:1-5. CHANDRASEKARAN,R.,S.MURALIDHARAN,M.A,SUBRAMAN1AN&G.VARADARAJ, 1989.Theeffectofpaperandpulpmill effluents ontherateofoxygenconsumptionand the Hb contentofblood inTilapiamossambica(Peters).[Abslr. Pap.]Nam. Semin, aquaticEn- viron. &Organisms,Erode — [Abstr. No.72]. GHOSE, T.K.& S.K. KONAR, 1980. Toxicity ofchemicals and waste watersofpaper and pulp millstoworms, planktonsand molluscs. Indian J.environ.Hlth 22: 278-285. HINTON, H.E., 1981. Biologyofinsect eggs, Vols 1-3.PergamonPress,Oxford KAWASAKI, H„H. SATO&M.SUZUKI, 1972. Structuralproteinsinthe silkworm eggs. Insect Biochem. I:130-147. KAWASAKI, H.,H. SATO&M.SUZUKI, 1974. Structuralproteinsin theeggenvelopsofdrag- onflies, Sympetruminfuscatumand S. frequens.InsectBiochem.2: 53-57. KSIBI.M.,S.B.AMOR,S.CHERIF,E. ELALOUI,A.HOUAS&M.ELALOUI, 2003. Photo- degradationofligninfromblack liquorusingaUV/Ti02 system.J. Photochem. Photobiol. (A) 154:211-218. MARGARITIS,L.H., 1985. Structure andphysiology oftheeggshell. In:G.A.Kerkut &L.I.Gil- bert,[Eds],Comprehensiveinsectphysiology,biochemistryandpharmacology,Vol. 1,pp. 153- -230,PergamonPress,Oxford. MARGARITIS,L.H.&M.MAZZINI,1998. Structure oftheegg.In:F.W.Harrison &M.Locke, [Eds],Microscopicanatomy ofinvertebrates,Vol. 11C,pp.995-1037,Wiley-Liss, NewYork. MILLER,P.L., 1992.Theeffectofoxygenlack onegghatchinginanindian dragonfly,Potamarcha congener. Physiol.Ent. 17:68-72. PETRI,W.H.,A.R.WYMAN&EC.KAFATOS, 1976. Specificproteinssynthesis in cellular dif- ferentiation. 3.TheeggshellproteinsinDrosophilamelanogasterandtheirprogram ofsyn- thesis. Dev. Biol. 49: 185-199. PUNZO,F., 1988.EffectoflowenvironmentalpH andtemperatureonhatchingand metabolicrates inembryosofAnaxjuniusDrury(Odonata:Aeshnidae)andtherole ofhypoxiainthehatch- ingprocess. Comp.Biochem. Physiol.91:333-336. RAO,G.M.&N.V.NAADHAKUMAR, 1982. Thetannery industrial effluenteffectonsuccinate dehydrogenaseactivitypatternin a freshwater snail,Pila globosa.Proc. Indian Acad Sci. (Anim.Sci.)91:427-431. REIGER,J.C.,GD. MAZUR&F.C.KAFATOS, 1980,Thesilkmoth chorion:morphologicaland 192 R.J.Andrew,L.Kodhe &S.S.Kurup biochemical characterization offoursurfaceregion.Dev. Biol 76:286-304. REIGER, J.C.,G.D. MAZUR,EC.KAFATOS & M. PAUL, 1982. Morphogenesisofsilkworm chorion: initial framework formation and itsrelation tosynthesis ofspecificproteins. Dev. Biol. 92: 159-174. SOEFFING,K., 1990. VerhaltensokologiederLibelle Leucorrhinia rubicunda (L.)(Odonata:Libel- luhdae)unter besonderer BeriicksichtigungnahrmgsokologischerAspekte. Diss. Univ. Ham- burg. SUBRAMANIAN, M.A.&S.MURALIDHARAN, 1999, The effectoftanneryeffluentonrectal gillsand oxygenconsumptioninthe larvaeofdragonflyPantala flavescens(Fabricius) (Li- bellulidae; Anisoptera).Fraseria (N.S.)6: 29-31. SUBRAMANIAN,M.A.&G.VARADARAJ, 1993.Theeffectofindustrial effluents onmoulting inMacromia cingulata(Rambur)(Anisoptera:Corduliidae).Odonatologica22:229-232. SUBRAMANIAN,M.A.&G.VARADARAJ, 1994.Impactoftanneryeffluentontissuefreeamino acids inthelarvaeofdragonflyPantalaflavescens(Fabricius).Fraseria(N.S.)1; 19-21. VARADARAJ,G.,M.A.SUBRAMANIAN&S.JAVASURIYA, 1993.Sublethal effectsofindus- trialeffluents onthebiochemical constituentsofthehaemolymphinthelarvaofMacromia cingulataRambur (Anisoptera:Corduliidae).Odonatologica22: 89-92.