ebook img

Finding a Hadamard Matrix by Simulated Quantum Annealing PDF

13 Pages·2017·0.75 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Finding a Hadamard Matrix by Simulated Quantum Annealing

entropy Article Finding a Hadamard Matrix by Simulated Quantum Annealing AndriyanBayuSuksmono ID TelecommunicationEngineeringScientificandResearchGroup(TESRG),SchoolofElectricalEngineeringand InformaticsandTheResearchCenteronInformationandCommunicationTechnology(PPTIK-ITB), InstitutTeknologiBandung,Jl.GaneshaNo.10,Bandung40132,Indonesia;[email protected] Received:2January2018;Accepted:16February2018;Published:22February2018 Abstract: Hardproblemshaverecentlybecomeanimportantissueincomputing. Variousmethods, includingaheuristicapproachthatisinspiredbyphysicalphenomena,arebeingexplored.Inthis paper, we propose the use of simulated quantum annealing (SQA) to find a Hadamard matrix, which is itself a hard problem. We reformulate the problem as an energy minimization of spin vectors connected by a complete graph. The computation is conducted based on a path-integral Monte-Carlo(PIMC)SQAofthespinvectorsystem,withanappliedtransversemagneticfieldwhose strengthisdecreasedovertime. Inthenumericalexperiments,theproposedmethodisemployedto findlow-orderHadamardmatrices,includingtheonesthatcannotbeconstructedtriviallybythe Sylvestermethod. Thescalingpropertyofthemethodandthemeasurementofresidualenergyafter asufficientlylargenumberofiterationsshowthatSQAoutperformssimulatedannealing(SA)in solvingthishardproblem. Keywords: quantumannealing;adiabaticquantumcomputing;hardproblems;Hadamardmatrix; binaryoptimization 1. Introduction 1.1. Background Finding a solution to a hard problem is a challenging task in computing. Such a problem is characterized by its complexity, as it grows beyond the polynomial against the size of the input. A class of particularly important ones are NP (non-deterministic polynomial) problems, in which verifying a solution can be conducted in polynomial time, whereas finding the solution is of exponentialorder.Examplesofsuchproblemsare,amongothers,theTSP(travelingsalesmanproblem), SAT(Booleansatisfiability),graphcoloring,graphisomorphism,andsubsetsums. Aninterestingapproachtothehardproblemsisamethodinspiredbyphysicalphenomena,such asclassicalannealing(CA)orquantumannealing(QA).BothCAandQAarephysicalprocessesthat obtainanordered(physical)systemfromanunorderedone,whichcanbedoneeitherthermally(asis thecaseinCA)orquantum-mechanically(asisthecaseinQA).Tosimulatethephysicalprocesseson a(classical/non-quantum)computer,numericalmethods,suchasMC(MonteCarlo)forCAandPIMC (path-integralMonteCarlo)forQA,havebeendeveloped. Thealgorithmorcomputationalmethod inspiredbyclassical/thermalannealingiscalledsimulatedannealing(SA),whereastheonebased onquantumannealingiscalledsimulatedquantumannealing(SQA).Bothofthesemethodsmake useofthemethodsinnumericalCAornumericalQA.TheyencodetheproblemintoaHamiltonian ofaspinsystem[1]andthenevolvethesystemfromahighenergystatedowntothegroundstate. Theannealingprocessenablesthesystemtoavoidlocalminimatrappingandthereforeiscapableof achievingaglobaloptimum,whichrepresentsthebestsolutionoftheproblem. Themaindifference Entropy2018,20,141;doi:10.3390/e20020141 www.mdpi.com/journal/entropy Entropy2018,20,141 2of13 betweenSAandSQAisintheevolutionofthesystems;whereasSAusesclassical/thermalannealing, SQAemploysquantummechanism. InSA[2–4],onestartsthesystemintotalrandomnesswithregardtoahightemperaturestate. Thetemperatureisthenloweredandthesystemisevolved,whichcausestheenergytodecreaseso thatthesystembecomesincreasinglyordered.Toavoidlocal-optimatrapping,aparticularupdating rule,suchastheMetropolis[2],isapplied. Theruleallowsthesystemto(sometimes)movetoahigher energystate. Uponcompletionofthealgorithm,thesystemachievesthegroundstate,atwhichpoint asolutionisfound. In [5], Kadowaki and Nishimori introduced quantum fluctuations to replace the thermal fluctuationsinSAtoacceleratetheconvergence. TheyappliedthemethodonanIsingmodel,wherea transversefieldplaystheroleoftemperatureinclassicalSA,enablingthesystemtoachievetheground statewithgreaterprobability.Santoroetal.[6]comparedclassicalandquantumMonteCarloannealing protocolsonatwo-dimensionalIsingmodel. TheyfoundthatthequantumMonteCarloannealingis superiortoclassicalannealing.In[7],Boixoetal.showexperimentalresultsona 108qubitD-WaveOne, whichisakindofhardwareimplementationofQA.AstrongcorrelationbetweenD-WaveandSQA, comparedtothedevicewithclassicalannealing,wasfound,whichindicatesthattheD-Waveperforms quantumannealing. ThisresultraisedtheimportantissueofwhetherQAactuallyoutperformsSA[8]. Rønnowetal. [9]showedhowquantumspeedupshouldbedefinedandmeasured. Inanexperiment with random spin glass instances on 503 qubits of D-Wave Two, they did not find any evidence of suchspeedup. Regardlessoftheseissues,differentresultshavebeenachievedviaSQA.Isakov[10]performed quantumMonteCarlo(QMC)simulationsandfoundthattheQMCtunnelingratedisplayedscaled accordingtosystemsize. HealsofoundquadraticspeedupinQMCsimulationswhen, insteadof periodicconditions,openboundaryconditionswereemployed. In[11],Mazzolaetal. demonstrated thatQMCsimulationscanrecoverthescalingofground-statetunnelingrates,whichvalidatesQAin termsofsolvingcombinatorialproblems. Someclassesofhardproblems,includingoneswithexponentialorcombinatorialcomplexity, havebeenasubjectofinterestinSQAresearch. Martonaketal. [12]introducedanapplicationofSQA tosolvetheTSPproblem.TheyfoundthataPIMCalgorithmwasmoreefficientthanSAintermsof findinganapproximatelyminimaltourinagivengraph.SQAhasalsobeenusedtosuccessfullyaddress otherhardproblemsrelatedtographs,suchasgraphcoloring[13]andgraphisomorphism[14]. Inthispaper,weproposeSQAasameantofindaHadamardmatrix(H-matrix).Previously,in[15], wesuccessfullyemployedSAtoperformasimilartask,inwhichlow-orderH-matriceswerefound. ComparedtoexistingH-matrixconstructionmethods,anSA-basedmethodismoregeneralinterms ofitscapabilityoffinding(orconstructingprobabilistically)anm =4korderH-matrix,withoutany restrictiononthepropertyoftheorderm,whereastheSylvestermethodrequiresm =2n,wherekand narepositiveintegers. ThispaperextendsthisclassicalSAmethodtoitsquantumversion,where PIMCbasedonSuzuki–Trotterformulation[16,17]isemployedtosimulatethequantumprocess. 1.2. FindingAHadamardMatrix AHadamardmatrix,orH-matrix,isanorthogonalbinary{±1}matrixofsize4k×4k,wherekis apositiveinteger. ThismatrixwasdiscoveredbyJ.J.Sylvester[18]in1867andthenstudiedmore extensively by J. Hadamard [19] during his investigation of the maximal determinant problem. TheorthogonalpropertymakestheH-matrixpopularinappliedareas,suchasinformationcoding and signal transform. In the 1960s and 1970s, Hadamard code was used in space exploration for informationtransmission[20,21].Inarecenttechnologicalcase,CDMA(code-divisionmultipleaccess), whichiswidelyusedincellularmobilephonesystems,employsWalsh–Hadamardsignalstoreduce interferencebetweenitsusers[22,23]. Entropy2018,20,141 3of13 OneofthemostimportantissuesinthetheoryofH-matrixisitsexistence.Any2l orderH-matrix withlapositiveintegercanbeconstructedusingSylvester’smethod. Furthermore,ifthereisanm orderH-matrix,m =4kcanbeshownforapositiveintegerk. Ontheotherhand,nooneyetknows ifthereisalwaysa4korderH-matrix[20,21]. ThelattercaseisformulatedastheHadamardmatrix conjecture. Uptothiswriting,thesmallestunknown4korderH-matrixis668. Variousreconstructionmethodshavebeenproposed[24–29]. Nevertheless,thesemethodsforce theordermtofollowaparticularrule. In[15],ageneralm = 4k orderalgorithmemployingSAis proposed. ThemethodworksonaspecialH-matrixcalledaseminormalizedHadamard(SH)matrix, in which the first column is a 4k order unity vector(cid:126)v = (1,··· ,1)T, and the rest are 4k order SH 0 vectors(cid:126)v ∈V. i Abrute-forcemethodneedstoverifyall N ofthe4korderbinarymatrixtofindanH-matrix, B whereN (4k) =216k2 [15]. Letallmatricesconstructedwhere(cid:126)v isthefirstcolumnandacombination B 0 of(cid:126)v ∈Vconstitutestheremaining(4k−1)columnsbecalledquasi-SH(QSH)matrices.Sincethereare i N =C(4k,2k)SHvectors,thereareaboutN (4k) ≈ (cid:16) 24k (cid:17)4k uniqueQSH-matrices. Althoughthe V QU 8k3/2 numberhasbeengreatlyreducedcomparedtoN ,exhaustivecheckingstillrequiresagreatamount B ofcomputationalresources. TheSAmethodproposedin[15]iscapableoffindingafewlow-orderSH matricesinamorereasonabletime. Followingtheconventioninourpreviouspaper[15],theroleofthespin,i.e.,its±1eigenvalues, isreplacedbySHspinvectors(cid:126)v ∈V. Tofinda4korderSH-matrix,oneneeds(4k−1)fullyconnected i SHspinvectors,whichinitiallyaresetrandomly. WithadefinedenergyE(Q(cid:126)),theSHspinvectorsare randomlychangedinaccordancewithconditionswherebyatransitionintoanotherSHspinvectoris allowedbutatransitionintoanon-SH-spin-vectorisforbidden. 2. Methods 2.1. SimulatedQuantumAnnealing TheHamiltonianofanIsingsystemwithspinconfiguration{σˆ },wherek∈K ={1,2,··· ,i,j,···} k isthesetofthelattice’sindices,canbeexpressedas Hˆ =−∑J σˆzσˆz−∑hσˆz (1) ij i j i i i(cid:54)=j i where J isacouplingconstant/strengthbetweenaspinatsiteiwithaspinatsitej,h isthemagnetic ij j strengthatsitej,and{σˆz,σˆx}arePauli’smatricesatsitei. InSQA,quantumfluctuationiselaborated i i by introducing a transverse magnetic field Γ. The Hamiltonian of the system takes the following form[5]: Hˆ =−∑J σˆzσˆz−∑hσˆz−Γ∑σˆx. (2) QA ij i j i i i i(cid:54)=j i i InEquation(2),thetransversefieldischanged(reduced)overtime,i.e.,Γ ≡ Γ(t). Ontheright handsideoftheequation,thefirsttwotermscorrespondstopotentialenergyHˆ ,whilethethirdone pot istheHamiltonianintroducedbythetransversefield,whichisrelatedtokineticenergyHˆ ;i.e,we kin candefine Hˆ ≡−∑J σˆzσˆz−∑hσˆz (3) pot ij i j i i i(cid:54)=j i Hˆ ≡−Γ∑σˆx. (4) kin i i Entropy2018,20,141 4of13 Ingeneral,Hˆ andHˆ donotcommute,so[Hˆ ,Hˆ ](cid:54)=0. DenotingtheHamiltonianofthe pot kin pot kin potentialasafunctionofspinconfigurationsHˆ ≡ Hˆ (cid:0){σˆz}(cid:1),wecanalsoexpressEquation(2)ina pot i moregeneralformasfollows: Hˆ =−Hˆ ({σˆz})−Γ∑σˆx. (5) QA i i i TosimulateaquantumsystemdescribedbyEquation(5)usingtheclassicalmethod,wehaveto formulatePIMCbyintroducingimaginarytime. ItcanbethenapproximatedbytheSuzuki–Trotter transformbyaddingonedimensionintheimaginarytimedirection,which,for(P×N)degreesof freedom,takesthefollowingform[13,30]: (cid:32) (cid:33) 1 ∑P (cid:0) (cid:1) P∑−1∑N ∑N HST = P Hpot {Si,p} −JΓ Si,pSi,p+1+ Sj,1Sj,p (6) p=1 p=1 i j where N isthenumberofspinsinthelattice, PisthenumberofTrotter’sreplicas,S = ±1arethe i eigenvaluesofthespinmatrices,and PT (cid:18) Γ (cid:19) JΓ =− lntanh >0 (7) 2 PT isthenearest-neighborcouplingofthetransversemagneticfield[30]. 2.2. SQAFormulationoftheSHSpinVector Similar to the previous paper [15], we employ a seminormalized Hadamard spin vector, abbreviated here as an SH spin vector, instead of an ordinary spin. In a 4k order SH spin vector, for a given positive integer k, 2k spins are −1and another2k spins are +1. Therefore, an SH spin vectortransitionisallowedonlyifthesebalancenumbersareconserved;otherwise,suchatransition isforbidden. WealsotreattheSHspinvectorasasingleentity,eventhoughitconsistsof4kspins, andisdenotedas(cid:126)v ∈V,whereVisthesetofall4k-orderSHvectors. Weformulatetheenergyofa i particularconfigurationofspinvectors{(cid:126)v}asfollows: i (cid:12) (cid:12) (cid:12) (cid:12) E({(cid:126)v})=(cid:12)∑(cid:126)v ·(cid:126)v +∑(cid:126)1·(cid:126)v(cid:12)−16k2 (8) i (cid:12) i j i(cid:12) (cid:12)i(cid:54)=j i (cid:12) where(cid:126)v ·(cid:126)v denotestheinnerproductofthevector(cid:126)v with(cid:126)v. i j i j Figure1showsanIsingsystemwithfourSHspinvectorswithanadditionalTrotter’sdimension. InthelowerpartofFigure1a,eachcirclerepresentsabinaryspin,whereasthesolidlinerepresentsthe connectionamongthespins. InteractingspiniwithbinaryvariableS andspinjwithbinaryvariable i S contributestheterm J SS totheHamiltonian. Fora4kordercase,every4knon-connectedspins j ij i j aregroupedintooneSHvector(cid:126)v,whichisillustratedasadashedline. Tosimplifythediagram,each i SHvectorisrepresentedbyafilledcircle;thus,weobtaintheupperpartofFigure1a,whichiscalleda sliceorareplica. InthePIMC,thesliceisreplicatedP-times,andtheseslicesarearrangedaslayers inimaginarytime. EachneighboringSHvectorinareplica,i.e.,(cid:126)vi,p with(cid:126)vi,p−1 and(cid:126)vi,p with(cid:126)vi,p+1, interacts. Theextension(inimaginarytime)isillustratedinFigure1b. TheHamiltonianinEquation(6) becomesaHamiltonianofanSHvectorspinsystemH thatcanberewrittenasfollows: QV (cid:32) (cid:33) 1 ∑P (cid:0) (cid:1) P∑−1∑ ∑ HQV = P Hpot {(cid:126)vi,p} −JΓ (cid:126)vi,p·(cid:126)vi,p+1+ (cid:126)vi,1·(cid:126)vi,p (9) p=1 p=1 i i Entropy2018,20,141 5of13 (cid:0) (cid:1) where JΓ ≡ JΓ(t)andHpot {(cid:126)vi,p} representcomplete-graphconnectionsamongtheSHspinvectors, similartoEquation(8),whichisgivenby (cid:12) (cid:12) (cid:12) (cid:12) H (cid:0){(cid:126)v }(cid:1)=(cid:12)∑(cid:126)v ·(cid:126)v +∑(cid:126)1·(cid:126)v (cid:12)−16k2. (10) pot i,p (cid:12) i,p j,p i,p(cid:12) (cid:12)i(cid:54)=j i (cid:12) TheevolutionofH inEquation(9)leadstothesolutiontotheH-matrixsearchproblem. QV (a) (b) Figure1. Connectiondiagramsofthespinsandspinvectors. Weconsiderafour-orderSHvector inthisexample: (a)fourSHspinsareconnectedbyacompletegraphK ,andeachcolumnisthen 4 groupedintoasingleSHspinvector;(b)anextensionoffullyconnectedSHspinvectorsintoaTrotter dimension(imaginarytime)τ. We will now formulate the SQA method for finding the H-matrix into an algorithm, which is displayed as pseudo-code in Algorithm 1. It takes the matrix order, the number of replicas, theinitialtemperature,theinitialvalueofΓ,andtheamountofiterationsandsub-iterationsasinputs. ThisalgorithmyieldseitheranSH-matrixoraQSH-matrixthathasmoreorthogonalcolumnvectors thantheinitialone. ThealgorithmstartswitharandominitializationofreplicaswithQSH-matrices, whichare(4k−1)setsofSHvectors,andthencalculatesitsinitialenergy. Followingthescheduleofa lineartransversefield,atrialtransitionisperformedforeachreplica. Theacceptanceandrejection ofthetransitionisbasedontheMetropoliscriterion. Theiterationwillbestoppedwheneitherthe numberofmaximumiterationsisreachedoranSH-matrixisfound. Entropy2018,20,141 6of13 Algorithm1FindinganH-MatrixviaSimulatedQuantumAnnealing 1: Input: OrderofSH-matrix4k,numberofreplicasP,T0,Γ0, MaxIter,SubIter. (cid:126) (cid:126) 2: Output: A4k-orderSH-matrixHF orapartiallyorthogonalmatrixQ. 3: InitializeT = T0,Γ = Γ0 4: Initializeall-replicasRwithrandomlygeneratedQSH-matrix: R ← {Q(cid:126)1,...,Q(cid:126)P} 5: idx ←0 6: H(cid:126)F ←(cid:126)0 7: FLAG←0 8: while(idx < MaxIter)or(FLAG==0)do 9: Calculate JΓ(idx;Γ,P,T) 10: Calculatecurrentall-replicasenergy: Erep = HQV(R,JΓ) 11: r ←0 12: whiler < Pdo (cid:126) 13: Selectareplicaatpositionr: Qr 14: Calculatepotentialenergyofthereplica: Epot = Hpot(Q(cid:126)r) 15: ifEpot >0then 16: m ←0 17: while (m < SubIter)and(FLAG==0) do 18: FlipSHspinvectorrandomly: Q(cid:126)r → Q(cid:126)r(cid:48) 19: Calculateenergyoftheupdatedreplica: Epot1 = Hpot(Q(cid:126)r(cid:48)) 20: ifEpot1==0 then 21: Epot ← Epot1 22: H(cid:126)F ← Q(cid:126)r(cid:48) 23: FLAG←1 24: r ← P 25: else 26: Updateall-replicas: R → R(cid:48) 27: Calculateenergyofupdatedall-replicasErep1 ← HQV(R(cid:48),JΓ) 28: ∆Erep ← Erep1−Erep 29: ∆Epot ← Epot1−Epot 30: Performatransitionifallowed(Metropolisupdaterule): 31: if (∆Epot <0)or(∆Erep <0)or(e−∆ETrep >rand)then 32: Acceptthetransition: R ← R(cid:48),Erep ← Erep1 33: endif 34: endif 35: m ← m+1 36: endwhile 37: else 38: H(cid:126)F ← Q(cid:126)r 39: FLAG←1 40: r ← P 41: endif 42: r ←r+1 43: endwhile 44: endwhile Entropy2018,20,141 7of13 3. NumericalExperimentsandAnalysis 3.1. Findinga12-OrderSH-MatrixUsingSQA Wehaveperformednumericalexperimentstofindlow-orderH-matrices. Herewepresentresults fortheH-matrixoforder12fordetailedanalysis,sinceitisthelowest-orderH-matrixthatcannot beconstructedbytheSylvestermethod. Initially,alloftheslices(replica)werefilledwithrandomly generated(cid:126)v ∈V. NotethattherearetwonestediterationsinAlgorithm1.Thefirstoneisaniteration i ofallreplicaswiththemaximumnumbersettok·M×M,whereM=12istheH-order.Thesecondone isaniterationofflippingwithinasliceofareplica,whosenumberisc·M,ccanbeanysmallnumber. The energy evolution during the iteration is shown in Figure 2. The figure shows curves of replicaenergyE ,meanpotentialenergyEp ,andminimumpotentialenergyEp . Thereplica rep mean min energyisdefinedsimilarlytoEquation(9), i.e., E ≡ H , whereasthepotentialenergyisgiven rep QV byEquation(10) E ≡ H . Themeanandminimumvalueshavebeentakenacrossthereplicas. pot pot Basedonthefigure,bothEp andE fluctuateovertime,buttheytendtodecrease. Theminimum mean rep energyofalatticeinthereplicaEp alsotendstodecrease. WhenEp =0,theH-matrixisfound. min min Figure2.EnergyevolutionduringtheSQAalgorithmrunstofindanSH-matrixoforder12.Fourcurves aredrawninthegraph,whicharethemeanpotentialenergyEpmean,theminimumpotentialenergy Epmin,thereplicaenergyErep,andthedeviationstandardofthepotentialenergyEpstd.WhenEpmin equalszero,theiterationisstoppedsinceanSH-matrixhasbeenfound.TheEp curveindicateshigh std variationintheconfigurationofreplicasattheinitialstage,whichisthenreducedinlaterstages. The degree of orthogonality of the matrix Q(cid:126) is displayed by the indicator matrix D(cid:126) ≡ Q(cid:126)TQ(cid:126). Figure3showstheinitialQSH-matrixanditsrelatedindicatormatrix. Wealsoshowtheinitialand final indicators for the first and last slices of the replica in Figure 4. It is expected that all of the QSH-matricesbecomemoreorthogonal,indicatedbyalowernumberofzerosinoff-diagonalentries. Thelastfigureshowingthelastsliceofthereplicaconditionaftertheiterationsarecompletedclearly show this case. The found H-matrix is shown in the left part of Figure 5, with its corresponding indicatorshownontheright,whichisadiagonalmatrix. Entropy2018,20,141 8of13 Figure3.TheinitialstateofthefoundH-matrix:(a)TheQSH-matrix,whitesquaresindicate+1,black squaresindicate−1.(b)Orthogonalityindicator,graysquaresshowthenon-orthogonalitycondition ofrelatedpairofvectors. Figure4. Indicatormatricesofthereplicacontent:(a)thefirstreplicaattheinitialstage;(b)thelast replicaattheinitialstage;(c)thefirstreplicaatthefinalstage,and(d)thelastreplicaatthefinalstage. Thematricesattheinitialstagesshowmostofthevectorsasnon-orthogonal,whereasthoseatthefinal stagesshowmostofthevectorsasorthogonal. Entropy2018,20,141 9of13 Figure5.Finalresults:(a)thefoundH-matrixand(b)itsorthogonalityindicator.Thediagonalformof theindicatormatrixindicatesthatallofthecolumnvectorsarenoworthogonal. 3.2. TheNumberofTheReplicasandConvergenceIssue Intheory,thenumberofTrotter’sreplicasPshouldbeaslargeaspossible. However,inpractice, weshouldalsoconsidertheconvergenceissuewhenarunningtimerestriction(iterationnumber) isgiven.Asexplainedin[13,30],replicasprovidediversityofsolutions;agreater Pselectsthebest solutionwithminimumenergy. Ontheotherhand,thereplicasarenotmerelyrunningMonteCarlo onseveralreplicas;theinteractionsbetweenreplicas JΓ(t)alsodefinetheirbehavior,i.e.,alargevalue ofΓattheinitialstageimpliesalowvalueof JΓ,whichloosenstheconnections,andtheinteractions thenbecomeindependent. AlowΓvalueattheendofaniterationimpliesahigh JΓ value,which tightensthereplicaconnectionssuchthattheybecomesimilar. Tomeasurethesevariations,weuseda simpledeviationstandardofenergyacrossthereplicas. Figure6showsthecurvesofvariationofthe energyevolutionforP =5,10,15,and20infindinga12-orderH-matrix. Figure6. TheeffectofthereplicanumberPinthealgorithm: althoughideallyalargePisdesired, italsoneedstobeadjustedtotheproblem.Variationinreplicaenergy(intermsofdeviationstandards oftheenergyacrossthereplicas)whensearchingforanH-matrixisshown.Thenumbersofreplicas P=10,15,20yieldlargevariationsuptotheendoftheiteration,whereasP=5yieldsabetterresult withsteadyvaluesattheend.Inallofthesecases,fortheconstructionofa12-orderH-matrix,thetotal maximumiterationissetto20,000,consistingofaglobaliterationcountof20,000foreachP. Sinceinitiallythereplicasweresetrandomly,theywillhavealmostidenticalenergy,sovariation intheenergywillbeverylow. Inlateriterations,thevaluewillincreaseasanewconfigurationis explored, and this will be followed by a decrease, which indicates that the replicas have become homogeneous. Thiscycleofincreasing–decreasingenergyshouldbeobservedifPischosenproperly Entropy2018,20,141 10of13 withrespecttothedimensionoftheproblem(H-order)andasufficientnumberofiterations. WhenP istoosmall,thesystemwillperformakintoclassicalSA,whereasaPthatistoolargewillcausethe systemtofail. Thefigureshowsthat,foragivennumberofmaximumiterations20,000,thenumberof replicasP =5isthemostsuitable;anythinghigheristoohigh. Thisalsoshowsthatfrequentupdates onalimitednumberofreplicas,comparedtolessfrequentupdatesonalargernumberofreplicas, betterachieveconvergence. 3.3. PerformanceComparison: SQAvs. SA To compare performances, in the first experiment, we measured the residual error of both algorithms. Sincethegroundstateisachievedwhenthematrixbecomesorthogonal,inwhichcase Equation(10)willequalzero,theresidualerror(cid:101)willbedefinedastheminimum H overallofthe pot replicas,i.e.,(cid:101) =min(H ). WehavechosentheorderoftheH-matrixtobesufficientlylargesothat pot wewillstillhavearesidualerrorattheendoftheexecutionofthealgorithm,i.e.,sothattheH-matrix isnotfound. Weconsideredorder M =28tobesufficientforthispurpose,whereweactuallyhave 283 =21,952spins. WealsochoseaTrottersliceofP = 5andplottedthecurveforiterations50up to5,000,000. Following[30],theannealingschedulewaslinear;i.e.,thetemperatureTwasreducedlinearly inSA,andwasthetransversemagneticstrengthΓ. EventhoughTisreducedlinearly,thethreshold probabilityP willchangeexponentially. Byusingthefunction thresh 1 −1 P (t) =1− eT(t) (11) thresh 2 thethresholdwillstartabithigherthan0.5,whichasymptoticallyapproaches1.0attheendofiteration timet. Figure7showsthecurveofT(t),Pthresh(t),Γ(t),and JΓ(t). (a) (b) Figure7.TheannealingschedulesinSAandSQA:(a)Lineartemperaturescheduleandcorresponding thresholdscheduleinSA.(b)Lineartransverse-fieldΓ(t)andcorrespondingJΓ(t)inSQA. Theexperimentswererepeated10timesforeachcase. Theaveragesofresidualerrorsforeach iterationnumbersareplottedinFigure8forbothSAandSQA. Thefigureshowsthat,althoughinitiallytheresidualerrorofSQAislargerthanSA,theslope issteeper. Withahighernumberofiterations,whichinthiscaseisaround100,000,SQAissuperior. ConsideringthatSQAshowstheleastamountoferroramongthereplicaslices,itseemsthatvariation inthereplicaisanidealsolution. InSA,onceasolutionisselected,thechangeinspinconfiguration will be less significant by the time the system reaches a lower energy state. Therefore, in terms of findinganH-matrix,SQAissuperiortoSA.

Description:
We reformulate the problem as an energy minimization of spin find low-order Hadamard matrices, including the ones that cannot be constructed
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.