ebook img

Financial Statistics and Mathematical Finance: Methods, Models and Applications PDF

422 Pages·2012·2.48 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Financial Statistics and Mathematical Finance: Methods, Models and Applications

Financial Statistics and Mathematical Finance Financial Statistics and Mathematical Finance Methods, Models and Applications Ansgar Steland InstituteforStatisticsandEconomics RWTHAachenUniversity,Germany Thiseditionfirstpublished2012 ©2012JohnWiley&Sons,Ltd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissionto reusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright, DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyform orbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright, DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailablein electronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesand productnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheirrespective owners.Thepublisherisnotassociatedwithanyproductorvendormentionedinthisbook.Thispublicationisdesignedto provideaccurateandauthoritativeinformationinregardtothesubjectmattercovered.Itissoldontheunderstandingthat thepublisherisnotengagedinrenderingprofessionalservices.Ifprofessionaladviceorotherexpertassistanceisrequired, theservicesofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Steland,Ansgar. Financialstatisticsandmathematicalfinance:methods,modelsand applications/AnsgarSteland. Includesbibliographicalreferencesandindex. ISBN978-0-470-71058-6 1. Businessmathematics. 2. Calculus. I. Title. HF5691.S65852012 332.01’5195–dc23 2012007001 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-0-470-71058-6 Setin10/12ptTimesbyThomsonDigital,Noida,India. Contents Preface xi Acknowledgements xv 1 Elementaryfinancialcalculus 1 1.1 Motivatingexamples 1 1.2 Cashflows,interestrates,pricesandreturns 2 1.2.1 Bondsandthetermstructureofinterestrates 5 1.2.2 Assetreturns 6 1.2.3 Somebasicmodelsforassetprices 8 1.3 Elementarystatisticalanalysisofreturns 11 1.3.1 Measuringlocation 13 1.3.2 Measuringdispersionandrisk 16 1.3.3 Measuringskewnessandkurtosis 20 1.3.4 Estimationofthedistribution 21 1.3.5 Testingfornormality 27 1.4 Financialinstruments 28 1.4.1 Contingentclaims 28 1.4.2 Spotcontractsandforwards 29 1.4.3 Futurescontracts 29 1.4.4 Options 30 1.4.5 Barrieroptions 31 1.4.6 Financialengineering 32 1.5 Aprimeronoptionpricing 32 1.5.1 Theno-arbitrageprinciple 32 1.5.2 Risk-neutralevaluation 33 1.5.3 Hedgingandreplication 36 1.5.4 Nonexistenceofarisk-neutralmeasure 37 1.5.5 TheBlack–Scholespricingformula 37 1.5.6 TheGreeks 39 1.5.7 Calibration,impliedvolatilityandthesmile 41 1.5.8 Optionpricesandtherisk-neutraldensity 41 1.6 Notesandfurtherreading 43 References 43 2 Arbitragetheoryfortheone-periodmodel 45 2.1 Definitionsandpreliminaries 45 2.2 Linearpricingmeasures 47 2.3 Moreonarbitrage 50 vi CONTENTS 2.4 SeparationtheoremsinRn 53 2.5 No-arbitrageandmartingalemeasures 56 2.6 Arbitrage-freepricingofcontingentclaims 65 2.7 Constructionofmartingalemeasures:generalcase 70 2.8 Completefinancialmarkets 73 2.9 Notesandfurtherreading 76 References 76 3 Financialmodelsindiscretetime 79 3.1 Adaptedstochasticprocessesindiscretetime 81 3.2 Martingalesandmartingaledifferences 85 3.2.1 Themartingaletransformation 91 3.2.2 Stoppingtimes,optionalsamplingandamaximalinequality 93 3.2.3 ExtensionstoRd 101 3.3 Stationarity 102 3.3.1 Weakandstrictstationarity 102 3.4 LinearprocessesandARMAmodels 111 3.4.1 Linearprocessesandthelagoperator 111 3.4.2 Inversion 116 3.4.3 AR(p)andAR(∞)processes 119 3.4.4 ARMAprocesses 122 3.5 Thefrequencydomain 124 3.5.1 Thespectrum 124 3.5.2 Theperiodogram 126 3.6 EstimationofARMAprocesses 132 3.7 (G)ARCHmodels 133 3.8 Long-memoryseries 139 3.8.1 Fractionaldifferences 139 3.8.2 Fractionallyintegratedprocesses 144 3.9 Notesandfurtherreading 144 References 145 4 Arbitragetheoryforthemultiperiodmodel 147 4.1 Definitionsandpreliminaries 148 4.2 Self-financingtradingstrategies 148 4.3 No-arbitrageandmartingalemeasures 152 4.4 Europeanclaimsonarbitrage-freemarkets 154 4.5 Themartingalerepresentationtheoremindiscretetime 159 4.6 TheCox–Ross–Rubinsteinbinomialmodel 160 4.7 TheBlack–Scholesformula 165 4.8 Americanoptionsandcontingentclaims 171 4.8.1 Arbitrage-freepricingandtheoptimalexercisestrategy 171 4.8.2 Pricingamericanoptionsusingbinomialtrees 174 4.9 Notesandfurtherreading 175 References 175 CONTENTS vii 5 Brownianmotionandrelatedprocessesincontinuoustime 177 5.1 Preliminaries 177 5.2 Brownianmotion 181 5.2.1 Definitionandbasicproperties 181 5.2.2 Brownianmotionandthecentrallimittheorem 188 5.2.3 Pathproperties 190 5.2.4 Brownianmotioninhigherdimensions 191 5.3 Continuityanddifferentiability 192 5.4 Self-similarityandfractionalBrownianmotion 193 5.5 Countingprocesses 195 5.5.1 Thepoissonprocess 195 5.5.2 Thecompoundpoissonprocess 196 5.6 Le´vyprocesses 199 5.7 Notesandfurtherreading 201 References 201 6 Itoˆ Calculus 203 6.1 Totalandquadraticvariation 204 6.2 StochasticStieltjesintegration 208 6.3 TheItoˆ integral 212 6.4 Quadraticcovariation 225 6.5 Itoˆ’sformula 226 6.6 Itoˆ processes 229 6.7 Diffusionprocessesandergodicity 236 6.8 Numericalapproximationsandstatisticalestimation 238 6.9 Notesandfurtherreading 239 References 240 7 TheBlack–Scholesmodel 241 7.1 Themodelandfirstproperties 241 7.2 Girsanov’stheorem 247 7.3 Equivalentmartingalemeasure 251 7.4 Arbitrage-freepricingandhedgingclaims 252 7.5 Thedeltahedge 256 7.6 Time-dependentvolatility 257 7.7 ThegeneralizedBlack–Scholesmodel 259 7.8 Notesandfurtherreading 261 References 262 8 Limittheoryfordiscrete-timeprocesses 263 8.1 Limittheoremsforcorrelatedtimeseries 264 8.2 Aregressionmodelforfinancialtimeseries 273 8.2.1 Leastsquaresestimation 276 8.3 Limittheoremsformartingaledifference 278 viii CONTENTS 8.4 Asymptotics 283 8.5 Densityestimationandnonparametricregression 287 8.5.1 Multivariatedensityestimation 288 8.5.2 Nonparametricregression 295 8.6 TheCLTforlinearprocesses 302 8.7 Mixingprocesses 306 8.7.1 Mixingcoefficients 306 8.7.2 Inequalities 308 8.8 Limittheoremsformixingprocesses 313 8.9 Notesandfurtherreading 323 References 323 9 Specialtopics 325 9.1 Copulas–andthe2008financialcrisis 325 9.1.1 Copulas 326 9.1.2 Thefinancialcrisis 332 9.1.3 ModelsforcreditdefaultsandCDOs 335 9.2 LocalLinearnonparametricregression 338 9.2.1 Applications in finance: estimation of martingale measures and Itoˆ diffusions 339 9.2.2 Methodandasymptotics 340 9.3 Change-pointdetectionandmonitoring 350 9.3.1 Offlinedetection 351 9.3.2 Onlinedetection 359 9.4 Unitrootsandrandomwalk 363 9.4.1 TheOLSestimatorinthestationaryAR(1)model 364 9.4.2 Nonparametricdefinitionsforthedegreeofintegration 368 9.4.3 TheDickey–Fullertest 370 9.4.4 Detectingunitrootsandstationarity 373 9.5 Notesandfurtherreading 381 References 382 AppendixA 385 A.1 (Stochastic)Landausymbols 385 A.2 Bochner’slemma 387 A.3 Conditionalexpectation 387 A.4 Inequalities 388 A.5 Randomseries 389 A.6 Localmartingalesindiscretetime 389 AppendixB Weakconvergenceandcentrallimittheorems 391 B.1 Convergenceindistribution 391 B.2 Weakconvergence 392 CONTENTS ix B.3 Prohorov’stheorem 398 B.4 Sufficientcriteria 399 B.5 MoreonSkorohodspaces 401 B.6 Centrallimittheoremsformartingaledifferences 402 B.7 Functionalcentrallimittheorems 403 B.8 Strongapproximations 405 References 407 Index 409 Preface Thistextbookintendstoprovideacarefulandcomprehensiveintroductiontosomeofthemost importantmathematicaltopicsrequiredforathoroughunderstandingoffinancialmarketsand the quantitative methods used there. For this reason, the book covers mathematical finance inthenarrowsense,thatis,arbitragetheoryforpricingcontingentclaimssuchasoptionsand therelatedmathematicalmachinery,aswellasstatisticalmodelsandmethodstoanalyzedata fromfinancialmarkets.Theseareasevolvedmoreorlessseparatefromeachotherandthelack ofmaterialthatcoversbothwasamajormotivationformetoworkoutthepresenttextbook. Thus,IwroteabookthatIwouldhavelikedwhentakingupthesubject.Itaddressesmaster and Ph.D. students as well as researchers and practitioners interested in a comprehensive presentationofbothareas,althoughmanychapterscanalsobestudiedbyBachelorstudents who have passed introductory courses in probability calculus and statistics. Apart from a coupleofexceptions,allresultsareprovedindetail,althoughusuallynotintheirmostgeneral form.Giventheplethoraofnotions,concepts,modelsandmethodsandtheresultinginherent complexity,particularlythosecomingtothesubjectforthefirsttimecanacquireathorough understanding more quickly, if they can easily follow the derivations and calculations. For thisreason,themathematicalformalismandnotationiskeptaselementaryaspossible.Each chaptercloseswithnotesandcommentsonselectedreferences,whichmaycomplementthe presentedmaterialoraregoodstartingpointsforfurtherstudies. Chapter1startswithabasicintroductiontoimportantnotions:financialinstrumentssuch asoptionsandderivativesandrelatedelementarymethods.However,derivationsareusually not given in order to focus on ideas, principles and basic results. It sets the scene for the followingchaptersandintroducestherequiredfinancialslang.Cashflows,discountingand thetermstructureofinterestratesarestudiedatanelementarylevel.Thereturnoveragiven period of time, for assets usually a day, represents the most important economic object of interestinfinance,aspricescanbereconstructedfromreturnsandinvestmentsarejudgedby comparingtheirreturn.Statisticalmeasuresfortheirlocation,dispersionandskewnesshave importanteconomicinterpretations,andtherelevantstatisticalapproachestoestimatethem are carefully introduced. Measuring the risk associated with an investment requires being aware of the properties of related statistical estimates. For example, volatility is primarily relatedtothestandarddeviationandvalue-at-risk,bydefinition,requiresthestudyofquantiles andtheirstatisticalestimation.Thefirstchaptercloseswithaprimeronoptionpricing,which introducesthemostimportantnotionsofthefieldofmathematicalfinanceinthenarrowsense, namelytheprincipleofno-arbitrage,theprincipleofrisk-neutralpricingandtherelationof thosenotionstoprobabilitycalculus,particularlytotheexistenceofanequivalentmartingale measure.Indeed,thesebasicconceptsandacoupleoffundamentalinsightscanbeunderstood bystudyingtheminthemostelementaryformorsimplybyexamples. Chapter 2 then discusses arbitrage theory and the pricing of contingent claims within a one-periodmodel.Attime0onesetsupaportfolioandattime1welookattheresult.Within thissimpleframework,thebasicresultsdiscussedinChapter1aretreatedwithmathematical rigor and extended from a finite probability space, where only a finite number of scenarios xii PREFACE can occur, to a general underlying probability space that models the real financial market. Mathematical separation theorems, which tell us how one can separate a given point from convex sets, are applied in order to establish the equivalence of the exclusion of arbitrage opportunities and the existence of an equivalent martingale measure. For this reason, those separationtheoremsareexplicitlyproved.Theconstructionofequivalentmartingalemeasures basedontheEsschertransformisdiscussedaswell. Chapter 3 provides a careful introduction to stochastic processes in discrete time (time series),coveringmartingales,martingaledifferences,linearprocesses,ARMAandGARCH processes as well as long-memory series. The notion of a martingale is fundamental for mathematicalfinance,asoneofthekeyresultsassertsthatinanyfinancialmarketthatexcludes arbitrage,thereexistsaprobabilitymeasuresuchthatthediscountedpriceseriesofarisky asset forms a martingale and the pricing of contingent claims can be done by risk-neutral pricingunderthatmeasure.Thesekeyinsightsallowustoapplytheelaboratedmathematical theoryofmartingales.However,thetreatmentinChapter3isrestrictedtothemostimportant findingsofthattheory,whicharereallyusedlater.Takingfirst-orderdifferencesofamartingale leadsnaturallytomartingaledifferencesequences,whichformwhitenoiseprocessesandare acommonreplacementfortheunrealistici.i.d.errortermsinstochasticmodelsforfinancial data and, more generally, economic data. A key empirical insight of the statistical analysis of financial return series is that they can often be assumed to be uncorrelated, but they are usuallynotindependent.However,otherseriesmayexhibitsubstantialserialdependencethat hastobetakenintoaccount.Appropriateparametricclassesoftime-seriesmodelsareARMA processes,whichbelongtothemoregeneralandinfinite-dimensionalclassoflinearprocesses. BasicapproachestoestimateautocovariancefunctionsandtheparametersofARMAmodels arediscussed.Manyfinancialseriesexhibitthephenomenonofconditionalheteroscedasticity, whichhasgivenrisetotheclassof(G)ARCHmodels.Lastly,fractionaldifferencesandlong- memoryprocessesareintroduced. Chapter4discussesindetailarbitragetheoryinadiscrete-timemultiperiodmodel.Here, tradingisallowedatafinitenumberoftimepointsandateachtimepointthetradingstrategy canbeupdatedusingallavailableinformationonmarketprices.Usingthemartingaletheory indiscretetimestudiedinChapter3,itallowsustoinvestigatethepricingofoptionsandother derivativesonarbitrage-freefinancialmarkets.TheCox–Ross–Rubinsteinbinomialmodelis studiedingreaterdetail,sinceitisastandardtoolinpracticeandalsoprovidesthebasisto derivethefamousBlack–ScholespricingformulaforaEuropeancall.Inaddition,thepricing ofAmericanclaimsisstudied,whichrequiressomemoreadvancedresultsfromthetheory ofoptimalstopping. Chapter 5 introduces the reader to stochastic processes in continuous time. Brownian motion will be the random source that governs the price processes of our financial market model in continuous time. Nevertheless, to keep the chapter concise, the presentation of Brownian motion is limited to its definition and the most important properties. Brownian motionhaspuzzlingpropertiessuchascontinuouspathsthatarenowheredifferentiableorof boundedvariation.AdvancedmodelsalsoincorporatefractionalBrownianmotionandLe´vy processes, respectively. Le´vy processes inherit independent increments but allow for non- normaldistributionsofthoseincrementsincludingheavytailsandjump.FractionalBrownian motionisaGaussianprocessasisBrownianmotion,butitallowsforlong-rangedependent incrementswheretemporalcorrelationsdieoutveryslowly. Chapter6treatsthetheoryofstochasticintegration.Assumingthatthereaderisfamiliar withintegrationinthesenseofRiemannorLebesgue,westartwithadiscussionofstochastic

Description:
Mathematical finance has grown into a huge area of research which requires a lot of care and a large number of sophisticated mathematical tools. Mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, it considers various aspects of the application of sta
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.