ebook img

Financial Methods for Online Advertising PDF

153 Pages·2015·2.76 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Financial Methods for Online Advertising

Financial Methods for Online Advertising Bowei Chen Adissertationsubmittedinpartialfulfillment oftherequirementsforthedegreeof DoctorofPhilosophy of UniversityCollegeLondon. DepartmentofComputerScience UniversityCollegeLondon 16thJanuary2015 2 I, Bowei Chen, confirm that the work presented in this thesis is my own. Where informationhasbeenderivedfromothersources,Iconfirmthatthishasbeenindicated inthework. ©2014BoweiChen. Allrightsreserved. “Whenever a theory appears to you as the only possible one, take this as a sign that you have neither understood the theory northeproblemwhichitwasintendedtosolve.” –SirKarlRaimundPopper ObjectiveKnowledge: AnEvolutionaryApproach(1972) Abstract Online advertising, a form of advertising that reaches consumers through the World Wide Web, has become a multi-billion dollar industry. Using the state of the art com- puting technologies, online auctions have become an important sales mechanism for automating transactions in online advertising markets, where advertisement (shortly ad) inventories, such as impressions or clicks, are able to be auctioned off in millisec- ondsaftertheyaregeneratedbyonlineusers. However,withprovidingnon-guaranteed deliveries,thecurrentauctionmechanismshaveanumberoflimitationsincluding: the uncertainty in the winning payment prices for buyers; the volatility in the seller’s rev- enue; and the weak loyalty between buyer and seller. To address these issues, this thesis explores the methods and techniques from finance to evaluate and allocate ad inventories over time and to design new sales models. Finance, as a sub-field of mi- croeconomics,studieshowindividualsandorganisationsmakedecisionsregardingthe allocation of resources over time as well as the handling of risk. Therefore, we believe thatfinancialmethodscanbeusedtoprovidenovelsolutionstothenon-guaranteedde- liveryprobleminonlineadvertising. Thisthesishasthreemajorcontributions. Wefirst study an optimal dynamic model for unifying programmatic guarantee and real-time bidding in display advertising. This study solves the problem of algorithmic pricing and allocation of guaranteed contracts. We then propose a multi-keyword multi-click adoption. Thisworkdiscussesaflexiblewayofguaranteeddeliveriesinthesponsored search context, and it’s evaluation is under the no arbitrage principle and is based on the assumption that the underlying winning payment prices of candidate keywords for specificpositionsfollowageometricBrownianmotion. However,accordingtoourdata analysis and other previous research, the same underlying assumption is not valid em- pirically for display ads. We therefore study a lattice framework to price an ad option based on a stochastic volatility underlying model. This research extends the usage of adoptionstodisplayadvertisinginamoregeneralsituation. Acknowledgements IhavebeenveryluckytolearnfromanumberofoutstandingresearchersatUniversity CollegeLondon(UCL)duringmyPhDstudy. Firstofall,Iwishtoexpressmygreatest thankstomyfirstsupervisor,JunWang,whoseexcellentguidancehasbeenabsolutely essential for the completion of this thesis. I would like to thank him for introducing me into the field of online advertising, and his consistent encouragement and support. Over the years, I have learned many things from him: high quality research, effective communication skills and hard-working attitude. I can not ask for more and the high standardshehasimpartedtomewillbenefitmyresearcheffortsmywholelifelong. IamgratefultoIngemarCoxforbeingmysecondsupervisorandhisconstructive technicalguidanceonmyresearch. IwouldliketothankMohanKankanhalliformany enjoyable discussions during his visit at UCL, and his support in my research and job search. I would like to thank Sofia Ceppi for supervising me at Microsoft Research Cambridgeandheradviceonalgorithmicgametheoryandmechanismdesign. Iwould like to thank Philip Trelevean and Dell Zhang for being my thesis examiners and their usefulcomments. IalsoappreciatePhilip’sguidanceandsupportonmyinternshipand jobsearch. IwouldliketothankJinqiuHuaforrecommendingmetoUCLandhiskind advice on talks, research, and everything in between. I am grateful to all the faculty, staff,andstudentsatUCLwhohavehelpedmeinwayslargeandsmall. Iappreciatethe funding supports from the Faculty of Engineering (Dean’s Prize), the UCL Advances (PhDEnterpriseScholarship)andtheUCLBITE(SecondmentExchangeAward). I would like to express my deep gratitude to my family and friends, for their con- tinuous love, support, and encouragement. Special thanks go to my wife Xin Wang, who has always been there right beside me through the most difficult periods of my PhD journey. Without her many sacrifices, I would not have made it this far. Finally, I would love to dedicate this thesis to my baby boy Yanchen Chen, who has brought so muchhappinessandjoytoourlives. Contents Abstract 4 Acknowledgements 5 ListofFigures 14 ListofTables 17 Notation 18 1 Introduction 19 1.1 MajorTypesofOnlineAds . . . . . . . . . . . . . . . . . . . . . . . . 20 1.2 MarketParticipants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3 FundamentalChallenges . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4 ProposedSolutionsUsingFinancialMethods . . . . . . . . . . . . . . 25 1.5 StructureoftheThesis . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Background 29 2.1 LiteratureReviewonOnlineAdvertising . . . . . . . . . . . . . . . . . 29 2.1.1 EvolutionofOnlineAdvertisingSalesMechanisms . . . . . . . 29 2.1.2 GuaranteedAdvertisingDeliveries . . . . . . . . . . . . . . . . 33 2.2 PreliminariesonFinancialMethods . . . . . . . . . . . . . . . . . . . 35 2.2.1 Uncertainty,RiskandTimeValueofMoney . . . . . . . . . . . 35 2.2.2 RevenueManagement . . . . . . . . . . . . . . . . . . . . . . 36 2.2.3 OptionsandOptionPricingMethods . . . . . . . . . . . . . . 37 3 OptimalPricingandAllocationofDisplayInventories 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 TheModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Contents 7 3.2.1 ProblemFormulation . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.2 DistributionofBidsinRTB . . . . . . . . . . . . . . . . . . . 50 3.2.3 RiskAversionandPurchaseBehaviour . . . . . . . . . . . . . 51 3.2.4 OptimalDynamicPrices . . . . . . . . . . . . . . . . . . . . . 52 3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.2 BiddingBehaviours . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.3 SupplyandDemand . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.4 BidsandPaymentPrices . . . . . . . . . . . . . . . . . . . . . 59 3.3.5 DemandforGuaranteedImpressions . . . . . . . . . . . . . . . 62 3.3.6 RevenueAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4 Multi-KeywordMulti-ClickAdOptionsforSponsoredSearch 69 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 FlexibleGuaranteedDeliveriesviaMulti-KeywordMulti-ClickAdOp- tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3 OptionPricingMethods . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.1 UnderlyingStochasticModel . . . . . . . . . . . . . . . . . . 74 4.3.2 TerminalValuePricing . . . . . . . . . . . . . . . . . . . . . . 75 4.3.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 RevenueAnalysisforSearchEngine . . . . . . . . . . . . . . . . . . . 79 4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5.1 DataandExperimentalDesign . . . . . . . . . . . . . . . . . . 82 4.5.2 ParameterEstimationandOptionPricing . . . . . . . . . . . . 83 4.5.3 ModelValidationandRobustnessTest . . . . . . . . . . . . . . 87 4.5.4 EffectsonSearchEngine’sRevenue . . . . . . . . . . . . . . . 93 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.7 ChapterAppendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.7.1 ProofoftheNo-EarlyExercisePropertyfortheAdOption . . . 95 4.7.2 DerivationoftheAdOptionPricingFormula . . . . . . . . . . 96 Contents 8 4.7.3 OptionPricingFormulasforSpecialCases . . . . . . . . . . . 98 5 LatticeMethodsforPricingDisplayAdOptions 100 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2 LatticesfortheGBMUnderlyingModel . . . . . . . . . . . . . . . . . 101 5.2.1 BinomialLattice . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.2.2 TrinomialLattice . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3 CensoredBinomialLatticefortheSVUnderlying . . . . . . . . . . . . 107 5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.4.1 DatasetsandExperimentalDesign . . . . . . . . . . . . . . . . 112 5.4.2 FitnessofGBMandSVModels . . . . . . . . . . . . . . . . . 113 5.4.3 DeliveryPerformanceforAdvertiser . . . . . . . . . . . . . . . 119 5.4.4 RevenueAnalysisforPublisherandSearchEngine . . . . . . . 122 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.6 ChapterAppendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.6.1 Proof of Equivalence of the Option Price under the One-Step BinomialLattice . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.6.2 Convergence of the Binomial Lattice Option Pricing Model to theBSMModel . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.6.3 Trinomial Lattice Methods for Pricing Display Ad Options withtheGBMUnderlying . . . . . . . . . . . . . . . . . . . . 128 5.6.4 BinomialDiffusionApproximation . . . . . . . . . . . . . . . 128 5.6.5 MathematicalResultsoftheSVModel . . . . . . . . . . . . . 129 6 Conclusion 133 6.1 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.2.1 OptimalStochasticDynamicModels . . . . . . . . . . . . . . 135 6.2.2 StochasticProcessesforMarketPrice . . . . . . . . . . . . . . 135 6.2.3 Game-TheoreticalModelsforAdOptionPricing . . . . . . . . 136 6.2.4 MarketDesignofAdDerivatives . . . . . . . . . . . . . . . . 136 Contents 9 Appendices 137 A GlossaryofTechnicalTerms 138 B RelatedPublications 141 Bibliography 143 List of Figures 1.1 Displayads(indottedbluelinebox)ontheYahoo! CarsWebpage. . . 22 1.2 Organicsearchresults(inbluelinebox)andpaidsearchresults(indot- tedbluelinebox)ontheGoogleSponsoredsearchresultspage(SERP). 22 1.3 DifferencesandrelationshipsofthecontributionsinChapters3-5. . . . 26 3.1 Systematic view of PG and RTB in display advertising, where [t ,t ] 0 n isthetimeperiodthatapublisher(orSSP)sellstheguaranteedimpres- sionswhichwillbecreatedinfutureperiod[t ,t ]. . . . . . . . . . . 46 n n+1 3.2 Theimpactofmodelparametersontheguaranteedsellingprices: α,β, ζ,ηaredefinedinEqs.(3.6)&(3.7);ωκistheexpectedsizeofpenalty; γ isthepercentageofestimatedfutureimpressionstosellinadvanced; T is the length of guaranteed selling period; τ is the remaining time to thedeliverydate;p(τ)istheguaranteedsellingpriceatτ. . . . . . . . . 55 3.3 OverviewofstatisticsforthewinningadvertisersfromtheSSPdataset inthetrainingperiod. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Overview of daily supply and demand of ad slots in the SSP dataset in the training period: S is the number of total supplied impressions; Q is the number of total demand impressions; ξ is the per impression demand(i.e.,thenumberofadvertiserswhobidforanimpression). . . 60 3.5 HierarchicalclustertreeofadslotsintheSSPdatasetwherethecluster metricisaveragedistanceintheperimpressiondemandξ. . . . . . . . 60 3.6 Overview of advertisers’ hourly arrival per day, where the red shaded barrepresentsthepeakhour. . . . . . . . . . . . . . . . . . . . . . . . 61 3.7 Empirical example of estimating π(ξ), φ(ξ) and ψ(ξ) for AdSlot25 from historical bids, where ξ is the per impression demand, π(ξ) is the expected winning bid, φ(ξ) is the expected payment price and ψ(ξ) is thestandarddeviationofpaymentprices. . . . . . . . . . . . . . . . . 62

Description:
We therefore study a lattice framework to price an ad option based on a communication skills and hard-working attitude. bids and payment price in RTB on the delivery date; (e) the compari- by most traditional media for brand advertising [Evans, 2009] However, compared to Balseiro et al.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.