ebook img

Financial Mathematics: A Comprehensive Treatment in Discrete Time (Chapman and Hall/CRC Financial Mathematics Series) PDF

590 Pages·2021·8.853 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Financial Mathematics: A Comprehensive Treatment in Discrete Time (Chapman and Hall/CRC Financial Mathematics Series)

Financial Mathematics Chapman & Hall/CRC Financial Mathematics Series Aims and scope: The field of financial mathematics forms an ever-expanding slice of the financial sector. This series aims to capture new developments and summarize what is known over the whole spectrum of this field. It will include a broad range of textbooks, reference works and handbooks that are meant to appeal to both academics and practitioners. The inclusion of numerical code and concrete real-world examples is highly encouraged. Series Editors M.A.H. Dempster Centre for Financial Research Department of Pure Mathematics and Statistics University of Cambridge Dilip B. Madan Robert H. Smith School of Business University of Maryland Rama Cont Department of Mathematics Imperial College Robert A. Jarrow Lynch Professor of Investment Management Johnson Graduate School of Management Cornell University Handbook of Financial Risk Management Thierry Roncalli Optional Processes Stochastic Calculus and Applications Mohamed Abdelghani, Alexander Melnikov Machine Learning for Factor Investing Guillaume Coqueret and Tony Guida Malliavin Calculus in Finance Theory and Practice Elisa Alos, David Garcia Lorite Risk Measures and Insurance Solvency Benchmarks Fixed-Probability Levels in Renewal Risk Models Vsevolod K. Malinovskii Giuseppe Campolieti Professor, Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario Roman N. Makarov Associate Professor, Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario For more information about this series please visit: https://www.crcpress.com/Chapman-and- HallCRC-Financial-Mathematics-Series/book-series/CHFINANCMTH Financial Mathematics A Comprehensive Treatment in Discrete Time Second Edition by Giuseppe Campolieti Professor, Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario Roman N. Makarov Associate Professor, Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario Second edition published 2021 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2021 Taylor & Francis Group, LLC First edition published by CRC Press 2014 CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as- sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho- tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for iden- tification and explanation without intent to infringe. ISBN: 978-1-138-58787-8 (hbk) ISBN: 978-1-032-02307-6 (pbk) ISBN: 978-0-429-50366-5 (ebk) Typeset in CMR10 font by KnowledgeWorks Global Ltd. To our students Contents List of Figures xiii List of Tables xvii Preface xix I Introduction to Pricing and Management of Financial Secu- rities 1 1 Mathematics of Compounding 3 1.1 Interest and Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Amount Function and Return . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Simple Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Periodic Compound Interest . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.4 Continuous Compound Interest . . . . . . . . . . . . . . . . . . . . . 10 1.1.5 Equivalent Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1.6 Continuously Varying Interest Rates . . . . . . . . . . . . . . . . . . 14 1.2 Time Value of Money and Cash Flows . . . . . . . . . . . . . . . . . . . . . 16 1.2.1 Equations of Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.2.2 Deterministic Cash Flows and Their Net Present Values . . . . . . . 18 1.3 Annuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.1 Simple Annuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.2 Determining the Term of an Annuity . . . . . . . . . . . . . . . . . . 26 1.3.3 General Annuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.3.4 Perpetuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.3.5 Continuous Annuities . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.4 Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.4.1 Introduction and Terminology. . . . . . . . . . . . . . . . . . . . . . 31 1.4.2 Zero-Coupon Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.4.3 Coupon Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.4.4 Serial Bonds, Strip Bonds, and Callable Bonds . . . . . . . . . . . . 34 1.5 Yield Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.5.1 Internal Rate of Return and Evaluation Criteria . . . . . . . . . . . 36 1.5.2 Determining Yield Rates for Bonds . . . . . . . . . . . . . . . . . . . 38 1.5.3 Approximation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.5.4 The Yield Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1.6 Yield Risk and Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.6.1 Immunization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 vii viii Contents 2 Primer on Pricing Risky Securities 65 2.1 Stocks and Stock Price Models . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.1.1 Underlying Assets and Derivative Securities . . . . . . . . . . . . . . 65 2.1.2 Basic Assumptions for Asset Price Models . . . . . . . . . . . . . . . 66 2.2 Basic Price Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.2.1 A Single-Period Binomial Model . . . . . . . . . . . . . . . . . . . . 67 2.2.2 A Discrete-Time Model with a Finite Number of States . . . . . . . 74 2.2.3 Introducing the Binomial Tree Model . . . . . . . . . . . . . . . . . 77 2.2.4 Recursive Construction of a Binomial Tree . . . . . . . . . . . . . . 82 2.2.5 Self-Financing Investment Strategies in the Binomial Model . . . . . 83 2.2.6 Log-Normal Pricing Model . . . . . . . . . . . . . . . . . . . . . . . 86 2.3 Arbitrage and Risk-Neutral Pricing . . . . . . . . . . . . . . . . . . . . . . 91 2.3.1 The Law of One Price . . . . . . . . . . . . . . . . . . . . . . . . . . 92 2.3.2 A First Look at Arbitrage in the Single-Period Binomial Model . . . 93 2.3.3 Arbitrage in the Binomial Tree Model . . . . . . . . . . . . . . . . . 95 2.3.4 Risk-Neutral Probabilities . . . . . . . . . . . . . . . . . . . . . . . . 96 2.3.5 Martingale Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 2.3.6 Risk-Neutral Log-Normal Model . . . . . . . . . . . . . . . . . . . . 99 2.4 Value at Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 2.5 Dividend Paying Stock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3 Portfolio Management 113 3.1 Expected Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.1.1 Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.1.2 Mean-Variance Criterion . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.2 Portfolio Optimization for Two Assets . . . . . . . . . . . . . . . . . . . . . 122 3.2.1 Portfolio of Two Risky Assets . . . . . . . . . . . . . . . . . . . . . . 122 3.2.2 Portfolio Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3.2.3 The Minimum Variance Portfolio . . . . . . . . . . . . . . . . . . . . 129 3.2.4 Selection of Optimal Portfolios . . . . . . . . . . . . . . . . . . . . . 131 3.3 Portfolio Optimization for N Assets . . . . . . . . . . . . . . . . . . . . . . 137 3.3.1 Portfolios of Several Assets . . . . . . . . . . . . . . . . . . . . . . . 137 3.3.2 The Minimum Variance Portfolio . . . . . . . . . . . . . . . . . . . . 140 3.3.3 Minimum Variance Portfolio Line . . . . . . . . . . . . . . . . . . . . 141 3.3.4 Case without Short Selling . . . . . . . . . . . . . . . . . . . . . . . 144 3.3.5 Maximum Expected Utility Portfolio . . . . . . . . . . . . . . . . . . 145 3.3.6 Efficient Frontier and Capital Market Line. . . . . . . . . . . . . . . 147 3.4 The Capital Asset Pricing Model . . . . . . . . . . . . . . . . . . . . . . . . 152 3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4 Primer on Derivative Securities 163 4.1 Forward Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.1.1 No-Arbitrage Evaluation of Forward Contracts . . . . . . . . . . . . 165 4.1.2 Value of a Forward Contract . . . . . . . . . . . . . . . . . . . . . . 170 4.2 Basic Options Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 4.2.1 Payoffs of Standard Options . . . . . . . . . . . . . . . . . . . . . . . 172 4.2.2 Put-Call Parities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 4.2.3 Properties of European Options. . . . . . . . . . . . . . . . . . . . . 176 4.2.4 Early Exercise and American Options . . . . . . . . . . . . . . . . . 178 4.2.5 Nonstandard European-Style Options . . . . . . . . . . . . . . . . . 180 Contents ix 4.3 Fundamentals of Option Pricing . . . . . . . . . . . . . . . . . . . . . . . . 183 4.3.1 Pricing of European-Style Derivatives in the Binomial Tree Model . 183 4.3.2 Pricing of American Options in the Binomial Tree Model . . . . . . 191 4.3.3 OptionPricingintheLog-NormalModel:TheBlack–Scholes–Merton Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 4.3.4 Greeks and Hedging of Options . . . . . . . . . . . . . . . . . . . . . 196 4.3.5 Black–Scholes Equation . . . . . . . . . . . . . . . . . . . . . . . . . 202 4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 II Discrete-Time Modelling 217 5 Single-Period Arrow–Debreu Models 219 5.1 Specification of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 5.1.1 Finite-State Economy. Vector Space of Payoffs. Securities . . . . . . 219 5.1.2 Initial Price Vector and Payoff Matrix . . . . . . . . . . . . . . . . . 222 5.1.3 Portfolios of Base Securities . . . . . . . . . . . . . . . . . . . . . . . 223 5.2 Analysis of the Arrow–Debreu Model . . . . . . . . . . . . . . . . . . . . . 224 5.2.1 Redundant Assets and Attainable Securities . . . . . . . . . . . . . . 224 5.2.2 Completeness of the Model . . . . . . . . . . . . . . . . . . . . . . . 227 5.3 No-Arbitrage Asset Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 5.3.1 The Law of One Price . . . . . . . . . . . . . . . . . . . . . . . . . . 229 5.3.2 Arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 5.3.3 The First Fundamental Theorem of Asset Pricing. . . . . . . . . . . 232 5.3.4 Risk-Neutral Probabilities . . . . . . . . . . . . . . . . . . . . . . . . 236 5.3.5 The Second Fundamental Theorem of Asset Pricing . . . . . . . . . 239 5.3.6 Investment Portfolio Optimization . . . . . . . . . . . . . . . . . . . 240 5.4 Pricing in an Incomplete Market . . . . . . . . . . . . . . . . . . . . . . . . 243 5.4.1 A Trinomial Model of an Incomplete Market . . . . . . . . . . . . . 243 5.4.2 Pricing Unattainable Payoffs: The Bid-Ask Spread . . . . . . . . . . 246 5.5 Change of Num´eraire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 5.5.1 The Concept of a Num´eraire Asset . . . . . . . . . . . . . . . . . . . 252 5.5.2 Change of Num´eraire in a Binomial Model. . . . . . . . . . . . . . . 253 5.5.3 Change of Num´eraire in a General Single Period Model . . . . . . . 254 5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 6 Introduction to Discrete-Time Stochastic Calculus 271 6.1 A Multi-Period Binomial Probability Model . . . . . . . . . . . . . . . . . 271 6.1.1 The Binomial Probability Space . . . . . . . . . . . . . . . . . . . . 271 6.1.2 Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 6.2 Information Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 6.2.1 Partitions and Their Refinements . . . . . . . . . . . . . . . . . . . . 280 6.2.2 Sigma-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 6.2.3 Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 6.2.4 Filtered Probability Space . . . . . . . . . . . . . . . . . . . . . . . . 292 6.3 Conditional Expectation and Martingales . . . . . . . . . . . . . . . . . . . 293 6.3.1 Measurability of Random Variables and Processes . . . . . . . . . . 293 6.3.2 Conditional Expectations . . . . . . . . . . . . . . . . . . . . . . . . 295 6.3.3 Properties of Conditional Expectations. . . . . . . . . . . . . . . . . 301 6.3.4 Conditioning in the Binomial Model . . . . . . . . . . . . . . . . . . 305 6.3.5 Binomial Model with Interdependent Market Moves . . . . . . . . . 308 6.3.6 Sub-, Super-, and True Martingales. . . . . . . . . . . . . . . . . . . 312

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.