ebook img

Financial Markets Theory: Equilibrium, Efficiency and Information (Instructor's Solution Manual) (Solutions) PDF

31 Pages·2017·0.203 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Financial Markets Theory: Equilibrium, Efficiency and Information (Instructor's Solution Manual) (Solutions)

Emilio Barucci, Claudio Fontana Financial Markets Theory Equilibrium, Efficiency and Information Second Edition Solutions Manual Springer 2 ExercisesofChapter2 SolutionofExercise2.2: (i):ItsufficestoapplyDel’Hoˆpital’stheorem: 1 (cid:16) b−1 (cid:17) lim (a+bx) b −1 b→1b−1 (cid:18) (cid:19) b−1 1 x(b−1) =lim(a+bx) b log(a+bx)+ b→1 b2 b(a+bx) =log(a+x). (ii):Itsufficestonotethat: lim 1 (cid:18)1+bx(cid:19)b−b1 =−lim(cid:16)1+ x (cid:17)−n=−e−ax. b→0b−1 a n→∞ an (iii):ItsufficestoapplyDel’Hoˆpital’stheorem: 1−eax lim =−limxeax=−x. a→0 a a→0 SolutionofExercise2.4: Duetocondition(2.4),theriskpremiumρ (x˜)solvesthefollowingequation: u µ−ρ (x˜)−b(cid:0)µ−ρ (x˜)(cid:1)2=u(cid:0)E[x˜]−ρ (x˜)(cid:1)=E(cid:2)u(x˜)(cid:3)=µ−b(cid:0)σ2+µ2(cid:1). u u u 2 2 Theaboveconditionamountstothefollowingsecondorderequationforρ (x˜): u b b − ρ (x˜)2+(µb−1)ρ (x˜)+ σ2=0. u u 2 2 Undertheconditionthatµ <1/b,thepositiverootisgivenby (cid:114) (cid:16) (cid:17)2 1− 1+ b σ2 µb−1 ρ (x˜)= . u b/(µb−1) SolutionofExercise2.5: Duetocondition(2.4),theriskpremiumρ (x˜)solvesthefollowingequation: u −1exp(cid:0)−a(cid:0)µ−ρ (x˜)(cid:1)(cid:1)=u(cid:0)E[x˜]−ρ (x˜)(cid:1)=E(cid:2)u(x˜)(cid:3)=−1exp(cid:16)−a(cid:0)µ−aσ2(cid:1)(cid:17) u u a a 2 3 and,therefore, ρ (x˜)=aσ2/2. u SolutionofExercise2.6: Recall that, if x˜ is distributed as a log-normal random variable, meaning that logx˜∼N (µ,σ2),thenx˜1−a isalsodistributedasalog-normal,since(1−a)logx˜ isdistributedasN (cid:0)(1−a)µ,(1−a)2σ2(cid:1).Moreover 1 logE[x˜]=µ+ σ2. 2 Duetocondition(2.4),theriskpremiumρ (x˜)solvesthefollowingequation: u (cid:0)E[x˜]−ρ (x˜)(cid:1)1−a=E(cid:2)x˜1−a(cid:3). u Equivalently,passingtologarithmsandusingtheabovepropertiesofthelog-normal distribution, log(cid:0)E[x˜]−ρ (x˜)(cid:1)=µ+1−aσ2, u 2 sothat ρu(x˜)=E[x˜](cid:0)1−e−a2σ2(cid:1). Inanapproximateform,itholdsthatρ (x˜)≈aE[x˜]σ2/2. u SolutionofExercise2.11: Theindifferencebetweengamblesc)andd)impliesthat 1 1 20.25γ = 16γ+ 25γ, 2 2 which is verified for γ =1/2. For this value, the expected utility of gamble a) is 250001/2≈158.11,whileforgambleb)wehave 0.2×320001/2+0.7×100001/2+0.1×10001/2≈108.94. Therefore,since108.94<158.11,theagentwillprefergamblea). ExercisesofChapter3 SolutionofExercise3.2: (i):Theoptimalportfoliocanbeexplicitlycomputedbyrelyingonformula(3.10): 4 (1−bw r )E[r˜−r ] (1−0.006×100×1.1)(1.3−1.1) w∗= 0 f f = ≈7.359. b(cid:0)σ2(r˜)+E[r˜−r ]2(cid:1) 0.006×(1.5+0.22) f (ii):Fromformula(3.10)fortheoptimaldemandoftheriskyassetw∗,wegetthat w∗<0ifandonlyif1−b×100×1.1<0,i.e.,b>1/110. (iii):Byapplyingformula(3.10)withr(cid:48) =1.2,wecancomputethatthenewopti- f malvaluebecomesw∗≈3.09.ObservethatthisresultiscoherentwithProposition 3.5,sincethequadraticutilityfunctionisIARAandthedemandoftheriskyassetis lessthantheinitialwealth. (iv):Formula(3.10)givesusavalueofw∗≈0.22fortheoptimalportfolioincor- respondenceoftheinitialwealthw(cid:48) =150.Observethatthisresultiscoherentwith 0 Proposition 3.3, since the quadratic utility function is IARA and, hence, the risky assetdemandisdecreasingwithrespecttoinitialwealth. (v): Formula (3.10) gives us a value of w∗ ≈3.75 for the optimal portfolio in cor- respondenceofanexpectedreturnofE[r˜(cid:48)]=1.2.Again,observethatthisresultis coherentwithProposition3.5. SolutionofExercise3.6: (i):Thevarianceoftheportfolio(w,1−w)canbeeasilycomputedas σ2(r˜)=w2σ2+(1−w)2σ2+2w(1−w)σ σ ρ, 1 2 1 2 sothat σ2(r˜)≤w2σ2+(1−w)2σ2+2w(1−w)σ σ =(cid:0)wσ +(1−w)σ (cid:1)2≤max{σ2;σ2}, 1 2 1 2 1 2 1 2 wherewehaveusedtheassumptionthat0≤w≤1. (ii):Ifρ=1,thenσ2(r˜)=(cid:0)wσ +(1−w)σ (cid:1)2,sothatthevarianceoftheportfolio 1 2 canbereducedtozerobylettingw=−σ /(σ −σ ). 2 1 2 (iii):Ifρ =−1,thenσ2(r˜)=(cid:0)wσ −(1−w)σ (cid:1)2,sothatthevarianceoftheport- 1 2 foliocanbereducedtozerobylettingw=σ /(σ +σ ). 2 1 2 SolutionofExercise3.8: (i): The problem consists in maximizing the expected utility function, so that, de- notingbywthedemandoftheriskyasset, (cid:18) (cid:113) (cid:113) (cid:19) max π w r +w(u−r )+(1−π) w r +w(d−r ) . 0 f f 0 f f w∈R Differentiating with respect to w at equating the derivative to zero, we obtain the followingoptimalitycondition: π(u−r ) (1−π)(d−r ) f f =− . (cid:112) (cid:112) w r +w∗(u−r ) w r +w∗(d−r ) 0 f f 0 f f Solvingforw∗weget 5 π2(u−r )2−(1−π)2(d−r )2 w∗=−w r f f . 0 f π2(u−r )2(d−r )−(1−π)2(d−r )2(u−r ) f f f f (ii):Theproblemconsistsinmaximizingtheexpectedutilityfunction,sothat,de- notingbywthedemandoftheriskyasset, (cid:16) (cid:0) (cid:1) (cid:0) (cid:1)(cid:17) max πlog w r +w(u−r ) +(1−π)log w r +w(d−r ) . 0 f f 0 f f w∈R Differentiatingwithrespecttow,equatingthederivativetozeroandsolvingforw∗, weget (cid:0) (cid:1) r − uπ+d(1−π) w∗=w r f . 0 f (u−r )(d−r ) f f (iii):Theproblemconsistsinmaximizingtheexpectedutilityfunction,sothat,de- notingbywthedemandoftheriskyasset, (cid:16) (cid:0) (cid:1)γ (cid:0) (cid:1)γ(cid:17) max π w r +w(u−r ) +(1−π) w r +w(d−r ) . 0 f f 0 f f w∈R Differentiating with respect to w at equating the derivative to zero, we obtain the followingoptimalitycondition: π(u−r )(cid:0)w r +w∗(u−r )(cid:1)γ−1=−(1−π)(cid:0)d−r )(w r +w∗(d−r )(cid:1)γ−1. f 0 f f f 0 f f Lettingα :=1/(γ−1)andsolvingforw∗weget (cid:0) (cid:1)α (cid:0) (cid:1)α −(1−π)(d−r ) − π(u−r ) w∗=w r f f . 0 f (cid:0) (cid:1)α (cid:0) (cid:1)α (u−r ) π(u−r ) −(d−r ) −(1−π)(d−r ) f f f f SolutionofExercise3.9: Notefirstthatthevariance-covariancematrixV oftherandomreturnsanditsinverse V−1takethefollowingform: V =(cid:20) 4 6ρ(cid:21) and V−1=(cid:34) 4(1−1ρ2) −6(1−ρρ2)(cid:35). 6ρ 9 − ρ 1 6(1−ρ2) 9(1−ρ2) (i):Byformula(3.11),theoptimalportfoliocanbeexpressedas 1 w∗= V−1(e−r 1), f a andthus,inthecontextofthepresentexercise, 6 1 ρ w∗= 0.1− 0.2, 1 4a(1−ρ2) 6a(1−ρ2) ρ 1 w∗=− 0.1+ 0.2. 2 6a(1−ρ2) 9a(1−ρ2) Fromtheaboveexpressionitcanbecheckedthatw∗,w∗>0ifandonlyifρ<3/4. 1 2 Notealsothatw∗>0foreveryρ ∈(−1,1). 2 (ii):Frompart(i),itfollowsthatforρ=0.5theoptimalportfolioisdiversified.Sup- posethenthatρ =0.5.AsshowninSection3.1,theoptimalportfolioisdiversified ifandonlyif ρσ σ 10.2<0.1< 1 0.2. σ ρσ 2 2 Ascanbeeasilychecked,theaboveinequalitiesholdifandonlyif (cid:26) (cid:27) σ 2σ ρ ≤min 2 ; 1 . 2σ σ 1 2 Hence,giventhevaluesofthevariancesandpreservingtheinequalityσ ≤2σ ,if 2 1 thecorrelationcoefficientρ increases,σ mustincreaseand/orσ mustdecreasein 2 1 orderfortheoptimalportfoliotoremaindiversified. (iii):Forρ =0.5,theoptimalportfolioisgivenbyw∗≈ 1(0.011,0.019)(cid:62),sothat a the agent invests an amount greater than one in the risky assets if a≤0.03. For ρ=−0.5,theoptimalportfolioisgivenbyw∗≈ 1(0.056,0.041)(cid:62),sothattheagent a investsanamountgreaterthanoneintheriskyassetsifa≤0.097. SolutionofExercise3.16: Letusdenotebye=(e ,e )(cid:62) theexpectedreturnsofassets1and2and,similarly, 1 2 by σ2 and σ2 the variance of r˜ and r˜ , respectively, and by ρ their correlation 1 2 1 2 coefficient.Then, 1 (cid:18) σ2 −ρσ σ (cid:19) V−1= 2 1 2 , σ12σ22(1−ρ2) −ρσ1σ2 σ21 sothat σ2e +σ2e −ρσ σ (e +e ) A=1(cid:62)V−1e= 2 1 1 2 1 2 1 2 , σ2σ2(1−ρ2) 1 2 σ2e2+σ2e2−2ρσ σ e e B=e(cid:62)V−1e= 2 1 1 2 1 2 1 2, σ2σ2(1−ρ2) 1 2 σ2+σ2−2ρσ σ C=1(cid:62)V−11= 1 2 1 2. σ2σ2(1−ρ2) 1 2 and D=BC−A2. The claim then follows by replacing the above expression into thegeneralformula(3.16)giveninTheorem3.12. 7 SolutionofExercise3.21: (i):Inthecaseoftworiskyassetsonly,theexpectedreturnofaportfolio(w,1−w)is completelydeterminedbytheproportionofwealthinvestedinthetworiskyassets, meaningthat E[r˜ ]=wE[r˜ ]+(1−w)E[r˜ ]=w×1.2+(1−w)×1.3. w 1 2 Hence, in order to yield a given expected return µ ∈R, the portfolio w has to be equaltow=(µ−1.3)/(1.2−1.3).Thecorrespondingvarianceisgivenby σ2(r˜ )=w2σ2(r˜ )+(1−w)2σ2(r˜ )+2w(1−w)ρσ(r˜ )σ(r˜ ) w 1 2 1 2 (cid:18) µ−1.3 (cid:19)2 (cid:18) µ−1.3 (cid:19)2 µ−1.3 (cid:18) µ−1.3 (cid:19) =4 +9 1− +2ρ 1− 6 1.2−1.3 1.2−1.3 1.2−1.3 1.2−1.3 (cid:18) µ−1.3 (cid:19)2 µ−1.3 =(13−12ρ) +(12ρ−18) +9, 1.2−1.3 1.2−1.3 thusconfirmingthat,inthevariance-expectedreturnplane,theportfoliofrontieris representedbyaparabola. (ii):Inthepresentsetting,itholdsthat V−1=(cid:32) 4(1−1ρ2) −6(1−ρρ2)(cid:33)=(cid:18) 1/3 −1/9(cid:19). − ρ 1 −1/9 4/27 6(1−ρ2) 9(1−ρ2) RecallfromSection3.2thatσ2(r˜ )=1/C,where wMVP (cid:18) (cid:19)(cid:18) (cid:19) 1/3 −1/9 1 C=1(cid:62)V−11=(1,1) =7/27, −1/9 4/27 1 sothatσ2(r˜ )=27/7.Moreover: wMVP V−11 27(cid:18) 1/3 −1/9(cid:19)(cid:18)1(cid:19) (cid:18)6/7(cid:19) wMVP= = = . C 7 −1/9 4/27 1 1/7 (iii):RecallfromProposition3.15that e−r 1 we=V−1 f . 1(cid:62)V−1(e−r 1) f Thedenominatorcanbeexplicitlycomputedas (cid:18) (cid:19)(cid:18) (cid:19) 1/3 −1/9 0.1 1(cid:62)V−1(e−r 1)=(1,1) ≈0.02963. f −1/9 4/27 0.2 Therefore: (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) 1 1/3 −1/9 0.1 0.375 we≈ = . 0.02963 −1/9 4/27 0.2 0.625 8 LetusalsocomputetheexpectedreturnE[r˜we]ofthetangentportfolio: E[r˜we]≈0.375×1.2+0.625×1.3=1.2625. (iv): In Exercise 3.9, we have shown that the optimal portfolio for the exponential utilityisgivenbyw∗= 1(0.011,0.019)(cid:62).Hence,thevalueofaforwhichtheop- a timalportfoliofortheexponentialutilitycoincideswiththetangentportfoliowe is givenbya≈0.0296. (v):Withoutariskfreeasset,thedesiredportfolioissimplyobtainedbyfindingthe valuew∈Rthatsatisfiesthefollowingequation: 1.25=w×1.2+(1−w)×1.3. Thisimpliesthat,inthecaseoftworiskyassetsonly,theequallyweightedportfolio (0.5,0.5) achieves the given expected return. In the case of two risky assets and a riskfreeasset,sinceanyfrontierportfoliocanbewrittenasthelinearcombination of the risk free asset and the tangent portfolio we, it suffices to determine the pro- portionofwealthα investedinthetangentportfolio.Theoptimalα isobtainedas thesolutiontothefollowingequation: 1.25=αE[r˜we]+(1−α)rf ≈α×1.2625+(1−α)×1.1, whichyieldsα =0.923.Hence,theoptimalportfolioforthegivenexpectedreturn µ =1.25isgivenby(0.923×0.375,0.923×0.625)(cid:62),while1−0.923isinvested intheriskfreeasset. (vi):Letuscomputetheexpectedreturnandthevarianceofthereturnofthegiven portfoliow(cid:48): E[r˜w(cid:48)]=0.6×1.2+0.5×1.3−0.1×1.1=1.26, σ2(r˜w(cid:48))=0.62×4+0.52×9+2×0.6×0.5×3=5.49. Letusnowcomputethefrontierportfoliowhichminimizesthevarianceforanex- pected return equal to µ =1.26. As done in part (v), it suffices to determine the optimal proportion of wealth invested in the tangent portfolio we, solving the fol- lowingequation: 1.26=αE[r˜we]+(1−α)rf ≈α×1.2625+(1−α)×1.1, yieldingassolutionα ≈0.985.Hence,thevarianceofthecorrespondingportfolio w(cid:48)(cid:48):=αwecanbecomputedasfollows,forρ =0.5: (cid:18) (cid:19)(cid:18) (cid:19) σ2(r˜w(cid:48)(cid:48))=α2σ2(r˜we)≈0.9842×(cid:0)0.3750.625(cid:1) 4339 00..367255 ≈5.31. Sinceσ2(r˜w(cid:48)(cid:48))=5.31<5.49=σ2(r˜w(cid:48)),whileE[r˜w(cid:48)(cid:48)]=E[r˜w(cid:48)],wehavethusshown thattheportfoliow(cid:48)cannotbelongtotheportfoliofrontier. 9 SolutionofExercise3.22: (i): The expected return of a portfolio w investing in the two risky assets only is givenby E[r˜ ]=wE[r˜ ]+(1−w)E[r˜ ], w 1 2 sothat,inordertoachieveagivenexpectedreturn µ ∈R,theoptimalportfoliow mustbegivenbyw=(µ−E[r˜ ])/(E[r˜ ]−E[r˜ ]),withacorrespondingvariance 2 1 2 (cid:18) µ−E[r˜ ] (cid:19)2 (cid:18) µ−E[r˜ ] (cid:19)2 σ2(r˜ )=2 2 +4 1− 2 w E[r˜ ]−E[r˜ ] E[r˜ ]−E[r˜ ] 1 2 1 2 √ µ−E[r˜ ] (cid:18) µ−E[r˜ ] (cid:19) +4 2ρ 2 1− 2 . E[r˜ ]−E[r˜ ] E[r˜ ]−E[r˜ ] 1 2 1 2 (ii):TheminimumvarianceportfoliowMVPcanbecomputedbyrelyingonformula (3.26), which gives wMVP =(0.82,0.18)(cid:62), if ρ =0.5, and wMVP =(0.61,0.39)(cid:62), inthecaseρ =−0.5. (iii): The tangent portfolio we can be computed by relying on Proposition 3.15, which gives we =(−1/3,4/3)(cid:62), if ρ =0.5, and we =(0.51,0.49)(cid:62), in the case ρ =−0.5. (iv):Fromthegeneraltheory,weknowthattheagentwillchooseanoptimalport- foliow∗ belongingtotheefficientportfoliofrontier.Hence,duetothepropertiesof theportfoliofrontier,theoptimalportfoliow∗canalwaysberepresentedbyalinear combinationofthetangentportfolioweandtheriskfreeasset.Hence,wecandeter- minetheoptimalportfoliow∗byapplyingformula(3.10)withrespecttothecouple tangent portfolio - risk free asset. Therefore, for a fixed initial wealth w =1, the 0 optimalinvestmentα∗inthetangentportfolioweisgivenby α∗= (1−brf)E[r˜we−rf] . b(cid:0)σ2(r˜we)+E[r˜we−rf](cid:1)2 Clearly,theagentwillinvestmorethanoneunitofwealthinthetangentportfoliowe ifandonlyifα∗>1.Intermsoftherisk-aversionparameterb,thelattercondition holdsifandonlyif b(cid:0)(σ2(r˜we)+E[r˜we]−rf)2−(E[r˜we]−rf)rf(cid:1)<E[r˜we]−rf. SolutionofExercise3.23: (i):Thevarianceofthereturnr˜ associatedtoaportfolio(w,1−w)isgivenbythe w generalformula σ2(r˜ )=w2σ2+(1−w)2σ2+2w(1−w)ρσ σ . w 1 2 1 2 Inordertoshowthatthereexistsw∈(0,1)suchthatσ(r˜ )<σ ,itsufficestoshow w 1 that the first derivative of the function w(cid:55)→σ2(r˜ ) evaluated at 1 is positive. The w firstderivativeisgivenby 10 dσ2(r˜ ) w =2wσ2−2(1−w)σ2+2(1−2w)ρσ σ , dw 1 2 1 2 and,whenevaluatedat1,itisequalto2σ2−2ρσ σ andispositiveifρ <σ /σ , 1 1 2 1 2 while,whenevaluatedat0,gives−2σ2+2ρσ σ .Sincethelatterquantityisneg- 2 1 2 ativeifρ<σ /σ ,thisimpliestheexistenceofw∈(0,1)suchthatσ(r˜ )<σ (as 1 2 w 1 canbeverifiedbyminimizingthefunctionw(cid:55)→σ2(r˜ ))andthat,forallw∈/[0,1], w itholdsthatσ(r˜ )≥σ . w 1 (ii): This follows from the general formula for the variance σ2(r˜ ), using the as- w sumptionthatσ2≤σ2. 1 2 (iii):Thisfollowsbyargumentsanalogoustothoseusedtoprovepart(i)oftheex- ercise. (iv):Foranyw∈R,itholdsthat σ2(r˜ )=σ2(cid:0)w2+(1−w)2+2ρw(1−w)(cid:1). w Thevalueofwwhichminimizesσ2(r˜ )canbefoundbysettingequaltozerothe w derivativeofthefunctionw(cid:55)→σ2(r˜ ),yielding w dσ2(r˜w) =2σ2(cid:0)w−(1−w)+ρ(1−2w)(cid:1)=2σ2(2w−1)(1−ρ), dw whichimmediatelyimpliesthatwMVP=(1/2,1/2)(cid:62),providedthatρ(cid:54)=1.Notethat ifρ =1thenthevarianceofaportfolioisconstantandalwaysequaltoσ2. SolutionofExercise3.27: Theagentmustsolvethefollowingoptimizationproblem: (cid:0) (cid:1) max πu(w −D−wp+w)+(1−π)u(w −wp) 0 0 w∈R+ (cid:18) (cid:16) b (cid:17) = max π w −D−wp+w)− (w −D−wp+w)2 0 0 w∈R+ 2 (cid:16) b (cid:17)(cid:19) +(1−π) (w −wp)− (w −wp)2 . 0 0 2 Thefirstorderconditioncanbewrittenas π(1−p)−πb(w −D−w∗p+w∗)(1−p)=(1−π)p−(1−π)pb(w −w∗p), 0 0 whichgivesthefollowingoptimalvalue π−p−bπ(w −D)(1−p)+b(1−π)w p w∗= 0 0 . bπ(1−p)2+b(1−π)p2 If p=π,thenitiseasytocheckthattheaboveexpressionreducestow∗=D.On theotherhand,ifp>π,thenonecanverifyfromtheaboveexpressionthatw∗<D, thusconfirmingtheresultofProposition3.23.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.