Financial Derivatives in Theory and Practice Revised Edition P. J. HUNT WestLB AG, London, UK J. E. KENNEDY University of Warwick, UK Copyright(cid:1)c 2004 JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester, WestSussexPO198SQ,England Telephone(+44)1243779777 Email(forordersandcustomerserviceenquiries):[email protected] VisitourHomePageonwww.wileyeurope.comorwww.wiley.com AllRightsReserved.Nopartofthispublicationmaybereproduced,storedinaretrieval systemortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying, recording,scanningorotherwise,exceptunderthetermsoftheCopyright,DesignsandPatents Act1988orunderthetermsofalicenceissuedbytheCopyrightLicensingAgencyLtd,90 TottenhamCourtRoad,LondonW1T4LP,UK,withoutthepermissioninwritingofthe Publisher.RequeststothePublishershouldbeaddressedtothePermissionsDepartment,John Wiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussexPO198SQ,England, [email protected],orfaxedto(+44)1243770620. Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationinregardtothe subjectmattercovered.ItissoldontheunderstandingthatthePublisherisnotengagedin renderingprofessionalservices.Ifprofessionaladviceorotherexpertassistanceisrequired,the servicesofacompetentprofessionalshouldbesought. OtherWileyEditorialOffices JohnWiley&SonsInc.,111RiverStreet,Hoboken,NJ07030,USA Jossey-Bass,989MarketStreet,SanFrancisco,CA94103-1741,USA Wiley-VCHVerlagGmbH,Boschstr.12,D-69469Weinheim,Germany JohnWiley&SonsAustraliaLtd,33ParkRoad,Milton,Queensland4064,Australia JohnWiley&Sons(Asia)PteLtd,2ClementiLoop#02-01,JinXingDistripark,Singapore 129809 JohnWiley&SonsCanadaLtd,22WorcesterRoad,Etobicoke,Ontario,CanadaM9W1L1 Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappears inprintmaynotbeavailableinelectronicbooks. BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN0-470-86358-7(Cloth) ISBN0-470-86359-5(Paper) Typesetin10/12ptComputerModernbyLaserwordsPrivateLimited,Chennai,India PrintedandboundinGreatBritainbyAntonyRoweLtd,Chippenham,Wiltshire Thisbookisprintedonacid-freepaperresponsiblymanufacturedfromsustainableforestryin whichatleasttwotreesareplantedforeachoneusedforpaperproduction. Contents Preface to revised edition xv Preface xvii Acknowledgements xxi Part I: Theory 1 1 Single-Period Option Pricing 3 1.1 Option pricing in a nutshell 3 1.2 The simplest setting 4 1.3 General one-period economy 5 1.3.1 Pricing 6 1.3.2 Conditions for no arbitrage: existence of Z 7 1.3.3 Completeness: uniqueness of Z 9 1.3.4 Probabilistic formulation 12 1.3.5 Units and numeraires 15 1.4 A two-period example 15 2 Brownian Motion 19 2.1 Introduction 19 2.2 Definition and existence 20 2.3 Basic properties of Brownian motion 21 2.3.1 Limit of a random walk 21 2.3.2 Deterministic transformations of Brownian motion 23 2.3.3 Some basic sample path properties 24 2.4 Strong Markov property 26 2.4.1 Reflection principle 28 3 Martingales 31 3.1 Definition and basic properties 32 3.2 Classes of martingales 35 3.2.1 Martingales bounded in L1 35 3.2.2 Uniformly integrable martingales 36 3.2.3 Square-integrable martingales 39 3.3 Stopping times and the optional sampling theorem 41 3.3.1 Stopping times 41 3.3.2 Optional sampling theorem 45 3.4 Variation, quadratic variation and integration 49 3.4.1 Total variation and Stieltjes integration 49 3.4.2 Quadratic variation 51 3.4.3 Quadratic covariation 55 viii Contents 3.5 Local martingales and semimartingales 56 3.5.1 The space c 56 loc M 3.5.2 Semimartingales 59 3.6 Supermartingales and the Doob—Meyer decomposition 61 4 Stochastic Integration 63 4.1 Outline 63 4.2 Predictable processes 65 4.3 Stochastic integrals: the L2 theory 67 4.3.1 The simplest integral 68 4.3.2 The Hilbert space L2(M) 69 4.3.3 The L2 integral 70 4.3.4 Modes of convergenceto H M 72 • 4.4 Properties of the stochastic integral 74 4.5 Extensions via localization 77 4.5.1 Continuous local martingales as integrators 77 4.5.2 Semimartingales as integrators 78 4.5.3 The end of the road! 80 4.6 Stochastic calculus: Itoˆ’s formula 81 4.6.1 Integration by parts and Itoˆ’s formula 81 4.6.2 Differential notation 83 4.6.3 Multidimensional version of Itoˆ’s formula 85 4.6.4 L´evy’s theorem 88 5 Girsanov and Martingale Representation 91 5.1 Equivalent probability measures and the Radon—Nikody´m derivative 91 5.1.1 Basic results and properties 91 5.1.2 Equivalent and locally equivalent measures on a filtered space 95 5.1.3 Novikov’scondition 97 5.2 Girsanov’stheorem 99 5.2.1 Girsanov’s theorem for continuous semimartingales 99 5.2.2 Girsanov’s theorem for Brownian motion 101 5.3 Martingale representation theorem 105 5.3.1 The space 2(M) and its orthogonal complement 106 I 5.3.2 Martingale measures and the martingale representation theorem 110 5.3.3 Extensions and the Brownian case 111 6 Stochastic Differential Equations 115 6.1 Introduction 115 6.2 Formal definition of an SDE 116 6.3 An aside on the canonical set-up 117 6.4 Weak and strong solutions 119 6.4.1 Weak solutions 119 Contents ix 6.4.2 Strong solutions 121 6.4.3 Tying together strong and weak 124 6.5 Establishing existence and uniqueness: Itoˆ theory 125 6.5.1 Picard—Lindelo¨f iteration and ODEs 126 6.5.2 A technical lemma 127 6.5.3 Existence and uniqueness for Lipschitz coefficients 130 6.6 Strong Markovproperty 134 6.7 Martingale representation revisited 139 7 Option Pricing in Continuous Time 141 7.1 Asset price processes and trading strategies 142 7.1.1 A model for asset prices 142 7.1.2 Self-financing trading strategies 144 7.2 Pricing European options 146 7.2.1 Option value as a solution to a PDE 147 7.2.2 Option pricing via an equivalent martingale measure 149 7.3 Continuous time theory 151 7.3.1 Information within the economy 152 7.3.2 Units, numeraires and martingale measures 153 7.3.3 Arbitrage and admissible strategies 158 7.3.4 Derivative pricing in an arbitrage-freeeconomy 163 7.3.5 Completeness 164 7.3.6 Pricing kernels 173 7.4 Extensions 176 7.4.1 General payout schedules 176 7.4.2 Controlled derivative payouts 178 7.4.3 More general asset price processes 179 7.4.4 Infinite trading horizon 180 8 Dynamic Term Structure Models 183 8.1 Introduction 183 8.2 An economy of pure discount bonds 183 8.3 Modelling the term structure 187 8.3.1 Pure discount bond models 191 8.3.2 Pricing kernel approach 191 8.3.3 Numeraire models 192 8.3.4 Finite variation kernel models 194 8.3.5 Absolutely continuous (FVK) models 197 8.3.6 Short-rate models 197 8.3.7 Heath—Jarrow—Mortonmodels 200 8.3.8 Flesaker—Hughstonmodels 206 x Contents Part II: Practice 213 9 Modelling in Practice 215 9.1 Introduction 215 9.2 The real world is not a martingale measure 215 9.2.1 Modelling via infinitesimals 216 9.2.2 Modelling via macro information 217 9.3 Product-based modelling 218 9.3.1 A warning on dimension reduction 219 9.3.2 Limit cap valuation 221 9.4 Local versus global calibration 223 10 Basic Instruments and Terminology 227 10.1 Introduction 227 10.2 Deposits 227 10.2.1 Accrual factors and LIBOR 228 10.3 Forward rate agreements 229 10.4 Interest rate swaps 230 10.5 Zero coupon bonds 232 10.6 Discount factors and valuation 233 10.6.1 Discount factors 233 10.6.2 Deposit valuation 233 10.6.3 FRA valuation 234 10.6.4 Swap valuation 234 11 Pricing Standard Market Derivatives 237 11.1 Introduction 237 11.2 Forward rate agreements and swaps 237 11.3 Caps and floors 238 11.3.1 Valuation 240 11.3.2 Put—call parity 241 11.4 Vanilla swaptions 242 11.5 Digital options 244 11.5.1 Digital caps and floors 244 11.5.2 Digital swaptions 245 12 Futures Contracts 247 12.1 Introduction 247 12.2 Futures contract definition 247 12.2.1 Contract specification 248 12.2.2 Market risk without credit risk 249 12.2.3 Mathematical formulation 251 12.3 Characterizing the futures price process 252 12.3.1 Discrete resettlement 252 Contents xi 12.3.2 Continuous resettlement 253 12.4 Recovering the futures price process 255 12.5 Relationship between forwards and futures 256 Orientation: Pricing Exotic European Derivatives 259 13 Terminal Swap-Rate Models 263 13.1 Introduction 263 13.2 Terminal time modelling 263 13.2.1 Model requirements 263 13.2.2 Terminal swap-ratemodels 265 13.3 Example terminal swap-rate models 266 13.3.1 The exponential swap-rate model 266 13.3.2 The geometric swap-ratemodel 267 13.3.3 The linear swap-rate model 268 13.4 Arbitrage-free property of terminal swap-rate models 269 13.4.1 Existence of calibrating parameters 270 13.4.2 Extension of model to [0, ) 271 ∞ 13.4.3 Arbitrage and the linear swap-rate model 273 13.5 Zero coupon swaptions 273 14 Convexity Corrections 277 14.1 Introduction 277 14.2 Valuation of ‘convexity-related’products 278 14.2.1 Affine decomposition of convexity products 278 14.2.2 Convexity correctionsusing the linear swap-rate model 280 14.3 Examples and extensions 282 14.3.1 Constant maturity swaps 283 14.3.2 Options on constant maturity swaps 284 14.3.3 LIBOR-in-arrearsswaps 285 15 Implied Interest Rate Pricing Models 287 15.1 Introduction 287 15.2 Implying the functional form D 288 TS 15.3 Numerical implementation 292 15.4 Irregular swaptions 293 15.5 Numerical comparison of exponential and implied swap-ratemodels 299 16 Multi-Currency Terminal Swap-Rate Models 303 16.1 Introduction 303 16.2 Model construction 304 16.2.1 Log-normalcase 305 16.2.2 General case: volatility smiles 307 16.3 Examples 308 xii Contents 16.3.1 Spread options 308 16.3.2 Cross-currencyswaptions 311 Orientation: Pricing Exotic American and Path-Dependent Derivatives 315 17 Short-Rate Models 319 17.1 Introduction 319 17.2 Well-known short-rate models 320 17.2.1 Vasicek—Hull—White model 320 17.2.2 Log-normalshort-rate models 322 17.2.3 Cox—Ingersoll—Rossmodel 323 17.2.4 Multidimensional short-rate models 324 17.3 Parameterfitting within the Vasicek—Hull—White model 325 17.3.1 Derivation of φ, ψ and B 326 T · 17.3.2 Derivation of ξ, ζ and η 327 17.3.3 Derivation of µ, λ and A 328 T · 17.4 Bermudan swaptions via Vasicek—Hull—White 329 17.4.1 Model calibration 330 17.4.2 Specifying the ‘tree’ 330 17.4.3 Valuation through the tree 332 17.4.4 Evaluation of expected future value 332 17.4.5 Erroranalysis 334 18 Market Models 337 18.1 Introduction 337 18.2 LIBOR market models 338 18.2.1 Determining the drift 339 18.2.2 Existence of a consistent arbitrage-freeterm structure model 341 18.2.3 Example application 343 18.3 Regular swap-marketmodels 343 18.3.1 Determining the drift 344 18.3.2 Existence of a consistent arbitrage-freeterm structure model 346 18.3.3 Example application 346 18.4 Reverse swap-marketmodels 347 18.4.1 Determining the drift 348 18.4.2 Existence of a consistent arbitrage-freeterm structure model 349 18.4.3 Example application 350 19 Markov-Functional Modelling 351 19.1 Introduction 351 19.2 Markov-functionalmodels 351 19.3 Fitting a one-dimensional Markov-functionalmodel to swaption prices 354 Contents xiii 19.3.1 Deriving the numeraire on a grid 355 19.3.2Existenceofaconsistentarbitrage-freetermstructuremodel 358 19.4 Example models 359 19.4.1 LIBOR model 359 19.4.2 Swap model 361 19.5 Multidimensional Markov-functional models 363 19.5.1 Log-normally driven Markov-functional models 364 19.6 Relationship to market models 365 19.7 Mean reversion, forward volatilities and correlation 367 19.7.1 Mean reversion and correlation 367 19.7.2 Mean reversion and forward volatilities 368 19.7.3 Mean reversion within the Markov-functional LIBOR model 369 19.8 Some numerical results 370 20 Exercises and Solutions 373 Appendix 1 The Usual Conditions 417 Appendix 2 L2 Spaces 419 Appendix 3 Gaussian Calculations 421 References 423 Index 427 Preface to revised edition Since this book first appeared in 2000, it has been adopted by a number of universitiesasastandardtextforagraduatecourseinfinance.Asaresultwe have produced this revised edition. The only differences in content between this text and its predecessor are the inclusion of an additional chapter of exercises with solutions, and the corrections of a number of errors. Many of the exercise are variants of ones given to students of the M.Sc. in Mathematical Finance at the University of Warwick, so they have been triedandtested.Manyprovidedrillinroutinecalculationsintheinterest-rate setting. Since the book first appeared there has been further development in the modelling of interest rate derivatives. The modelling and approximation of market models has progressed further, as has that of Markov-functional modelsthatarenowused,intheirmulti-factorform,inanumberofbanks.A notable exclusion from this revised edition is any coverage of these advances. Those interested in this area can find some of this in Rebonato (2002) and Bennett and Kennedy (2004). A few extra acknowledgements are due in this revised edition: to Noel Vaillant and Jørgen Aase Nielsen for pointing out a number of errors, and to Stuart Price for typing the exercise chapter and solutions.