ebook img

Final Report A Study into the Theoretical Appraisal of the Highest Usable Frequencies PDF

121 Pages·2003·1.1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Final Report A Study into the Theoretical Appraisal of the Highest Usable Frequencies

Final Report A Study into the Theoretical Appraisal of the Highest Usable Frequencies Radiocommunications Agency Contract Reference AY 4329 J. R. Norbury, C. J. Gibbins and D. N. Matheson Radio Communications Research Unit Rutherford Appleton Laboratory Chilton, Didcot Oxfordshire OX11 0QX Tel: +44 (0) 1235 446522 Fax: +44 (0) 1235 446140 May 2003 Theoretical Appraisal of the Highest Usable Frequencies . This page is intentionally blank 1 Theoretical Appraisal of the Highest Usable Frequencies . Table of Contents 1 INTRODUCTION...............................................................................................................3 2 PROPAGATION IN THE MILLIMETRIC AND INFRA-RED WAVEBANDS.................4 2.1 GASEOUSATTENUATION...............................................................................................4 2.2 SPECIFICGASEOUSATTENUATION.................................................................................4 2.3 PATHATTENUATIONTHROUGH THE CLEARATMOSPHERE FROM SEALEVEL....................7 2.4 ZENITHATTENUATION FROM HIGHALTITUDES..............................................................10 2.5 ATTENUATION DUE TO RAINFALL..................................................................................14 2.5.1 Frequency Range up to 400 GHz...............................................................................15 2.5.2 Terrestrial Path Attenuation.....................................................................................16 2.5.3 Slant-Path Rain Attenuation .....................................................................................20 2.5.4 Frequency Range above 400 GHz .............................................................................23 2.6 ATTENUATION DUE TO CLOUDS AND FOG......................................................................28 2.7 SCINTILLATIONEFFECTS..............................................................................................36 3 STATUS OF TECHNOLOGY...........................................................................................42 3.1 INTRODUCTION............................................................................................................42 3.2 TRANSMITTERTECHNOLOGY........................................................................................43 3.2.1 Available Transmit Power........................................................................................44 3.2.2 Technology Potential................................................................................................45 3.2.3 Bandwidth...............................................................................................................45 3.2.4 Convenience............................................................................................................45 3.2.5 Frequency and Phase Characteristics........................................................................46 3.3 RECEIVERTECHNOLOGY..............................................................................................46 3.3.1 Amplifier Technology...............................................................................................47 3.3.2 Diode Mixer Technology..........................................................................................49 3.3.3 Superconducting Mixer Technology ..........................................................................49 3.3.4 Receiver Performance..............................................................................................50 3.3.5 LO Requirements.....................................................................................................50 3.3.6 Receiver Potential....................................................................................................51 3.3.7 Bandwidth...............................................................................................................51 3.3.8 Convenience............................................................................................................51 3.3.9 Other Receiver Technology.......................................................................................52 3.4 COST OF TECHNOLOGY.................................................................................................52 4 REVIEW OF THE HIGHEST FREQUENCY ABOVE 100 GHZ AT WHICH VARIOUS COMMUNICATIONS SYSTEMS COULD OPERATE............................................................54 4.1 INTRODUCTION............................................................................................................54 4.2 ANTENNAS FOR MILLIMETRE AND SUBMILLIMETREWAVE SYSTEMS...............................54 4.3 RF POWERSUBSYSTEMS..............................................................................................56 4.4 SYSTEMEVALUATIONMETHODOLOGY .........................................................................56 4.5 SAFETYISSUES............................................................................................................57 4.6 DISCUSSION OF INDIVIDUALSYSTEMREQUIREMENTS AND RELATIVEPERFORMANCES....58 4.6.1 Fixed Service Applications, Point-to-Point (P-P) Links...............................................58 4.6.2 Broadband Fixed Wireless Access (BFWA) Systems...................................................63 4.6.3 High Density Application in the Fixed Satellite Service (HDFSS)................................65 4.6.4 Aeronautical Satellite Applications such as In-Flight Internet Access & High Quality Video Streams......................................................................................................................68 4.6.5 Cellular Mobile - 4G and Beyond (data rates up to 100 mb/s).....................................69 4.6.6 Typical Nomadic Broadband WLAN System (data rates up to 1 Gb/s)..........................71 4.6.7 Wireless Gigabit Ethernet (indoor)............................................................................71 4.6.8 Personal Area Networks – e.g. Wearable Devices......................................................73 4.6.9 High Altitude Platforms Systems (HAPS)...................................................................74 4.6.10 General Comments on UWB and Systems Above 100 GHz......................................75 1 Theoretical Appraisal of the Highest Usable Frequencies . 4.6.11 Home Entertainment and UWB Applications in Bands above 100 GHz....................76 4.6.12 Safety Aspects of Home Communications Systems..................................................76 4.6.13 Anti-collision Radar in Cars Using UWB Techniques.............................................77 4.6.14 Free Space Optical (FSO) Systems........................................................................79 4.6.15 Operational Issues with FSO Links.......................................................................80 4.6.16 Link Budget Calculations for FSO Systems............................................................81 4.6.17 Comparison of FSO and Millimetre Wave System Performance ..............................82 4.6.18 Other Applications for FSO Systems......................................................................83 5 CONCLUSIONS AND RECOMMENDATIONS...............................................................84 5.1 CONCLUSIONS..............................................................................................................84 5.2 RECOMMENDATIONS FOR FURTHERSTUDIES.................................................................85 6 REFERENCES ..................................................................................................................87 ANNEX 1...................................................................................................................................91 SOURCES OF CONTINUOUS WAVE POWER.......................................................................91 A1.1 FREQUENCY MULTIPLICATION.................................................................................91 A1.1.1 PLANAR VARACTOR/VARISTOR DIODE MULTIPLIERS......................................................92 A1.1.2 HBV DIODE MULTIPLIERS.............................................................................................93 A1.2 VACUUM ELECTRON DEVICES...................................................................................94 A1.2.1 KLYSTRONS................................................................................................................95 A1.2.2 BACKWARDWAVEOSCILLATORS................................................................................95 A1.2.3 GYROTRONS...............................................................................................................97 A1.3 SOLID STATE OSCILLATORS- NON LASER..............................................................97 A1.3.1 GUNNDIODES.............................................................................................................98 A1.3.2 IMPATT OSCILLATORS.............................................................................................100 A1.3.3 RESONANTTUNNELDIODES......................................................................................101 A1.4 MOLECULAR VAPOUR LASERS................................................................................101 A1.4.1 OPTICALLY PUMPED FIRLASERS................................................................................102 A1.5 POWER COMBINING...................................................................................................103 A1.5.1 POWERCOMBININGTECHNIQUES...............................................................................103 A1.6 QUANTUM CASCADE LASERS (QCL)........................................................................105 A1.7 PHOTOMIXING ............................................................................................................105 ANNEX 2.................................................................................................................................107 A2.1 MIXER TYPES...............................................................................................................107 A2.1.1 FUNDAMENTAL PUMP,SINGLE DIODE WAVEGUIDE MIXER............................................107 A2.1.2 SUB-HARMONIC, DOUBLE DIODE, MIXERS...................................................................107 A2.1.3 FUNDAMENTALLY PUMPED,BALANCED MIXER............................................................108 A2.2 DIODE MIXER DEVELOPMENT.................................................................................110 A2.2.1 INDIVIDUAL AND SMALL ARRAYS OF DIODES...............................................................110 A2.2 MONOLITHIC.............................................................................................................110 A2.2.3 DIODES ON QUARTZ...................................................................................................110 A2.2.4 MEMBRANE DEVICES.................................................................................................111 ANNEX 3.................................................................................................................................112 APPLICATIONS LIST PROVIDED BY RATO CONSIDER IN THE “HIGHESTUSABLEFREQUENCY STUDY”.................................................................................................................................112 ANNEX 4.................................................................................................................................113 SOME TYPICAL SUPPLIERS OF FSOEQUIPMENT........................................................................113 ANNEX 5.................................................................................................................................114 EXAMPLELINKBUDGETS.......................................................................................................114 2 Theoretical Appraisal of the Highest Usable Frequencies . 1 Introduction This Report investigates the upper operational frequency limit of several potential communications and radar systems, operating above 100 GHz; (Radiocommunications Agency ITT Reference AY 4329 “Theoretical Appraisal of the Highest Usable Frequencies”). This study has examined the constraints imposed by propagation conditions, device technology and safety aspects. Gaseous absorption renders nearly all wireless based systems non-viable above 1000 GHz. The performance of systems in the infrared and optical windows (generally referred to as free space optical, FSO) systems have also been examined and compared with millimetre wave systems. These FSO systems are currently available as operational equipment. The performances of several potential applications, which included point-to-point fixed services, broadband wireless access, satellite services, high-altitude platform systems, short- range nomadic services, indoor communications and anti-collision radar, have been estimated. The performance of point to point millimetre wave systems are also compared with existing FSO systems The propagation mechanisms, which affect millimetre wave and optical communications systems, are described in detail in Section 2. The technology of millimetre wave devices is discussed in detail in Section 3, where a review has been conducted to estimate the performance parameters (e.g. amplifier output levels, noise figures, etc) and device technologies which could be appropriate for commercially available systems in the next ten years. Section 4 examines the performance limitations of these systems by choosing a set of realistic parameters for each of the candidate systems. The link margins, which include gaseous absorption, are then calculated for clear air conditions. The range limitations and achievable performance in terms of availability are then determined in adverse climatic conditions. Upper limits of operational frequency are found to range from ~150 GHz to 700 GHz depending on the application. Most systems, excluding fixed satellite services, are found to be suitable for frequencies near or in excess of 300GHz, depending on the range. In general the higher upper frequency limits results from applications which could make use of high gain antennas and be appropriate for operations over short ranges, such as anti-collision radar systems. Surprisingly, short-range indoor communications for home networks are found to have one of the lowest upper limits of frequency. This arises from the need to deploy low gain antennas and safety considerations, which limit the RF power flux density from small- aperture low-gain antennas in the home environment. The performance of FSO systems in fog conditions, which persists for considerable periods of time (1% to 2%), is poor. Although both millimetre wave and FSO systems have similar performances in heavy rain conditions, millimetre wave systems are much less affected by fog and turbulence. 3 Theoretical Appraisal of the Highest Usable Frequencies . 2 Propagation in the Millimetric and Infra-red Wavebands This section of the Report considers the various propagation constraints imposed by the Earth’s atmosphere. These include absorption by atmospheric gases, scattering and attenuation by hydrometeors in the form of rain and cloud/fog, and scintillation phenomena induced by atmospheric turbulence. 2.1 Gaseous Attenuation Gaseous attenuations have been calculated using Recommendation ITU-R P.676-5, Annex 1 (Attenuation by Atmospheric Gases) [ITU-R, 2001], for the millimetric region of the spectrum, at frequencies up to 1000 GHz, 1 THz, and LOWTRAN 7 [Kneizys et al, 1988, 1989] for the regions above 1 THz. 2.2 Specific Gaseous Attenuation Specific gaseous attenuations are calculated for sea-level conditions, with a pressure of 1013.25 hPa, temperature of 15ºC and a surface water-vapour density of 7.5 g/m3, representing a relative humidity of ~58%. The following Figures show the specific attenuation in dB/km from 10GHz to 1000 THz. In the region from about 1 THz to 10 THz, attenuations are in excess of 200 dB/km the atmosphere can be regarded as essentially opaque, as shown in the next Figure, although some of the detail is smoothed out because of the limitation in frequency resolution of 5 cm-1, i.e. 300 GHz, inherent in the LOWTRAN model. 4 Theoretical Appraisal of the Highest Usable Frequencies . FIGURE 2.1a Specific attenuation at sea level (Pressure = 1013.25 hPa, temperature = 15ºC, water-vapour density = 7.5 g/m3) FIGURE 2.1b Specific attenuation at sea level (Pressure = 1013.25 hPa, temperature = 15ºC, water-vapour density = 7.5 g/m3) 5 Theoretical Appraisal of the Highest Usable Frequencies . FIGURE 2.1c Specific attenuation at sea level (Pressure = 1013.25 hPa, temperature = 15ºC, water-vapour density = 7.5 g/m3 FIGURE 2.1d Specific attenuation at sea level from 0 to 1.5 THz (Pressure = 1013.25 hPa, temperature = 15ºC, water-vapour density = 7.5 g/m3 6 Theoretical Appraisal of the Highest Usable Frequencies . FIGURE 2.1e Specific attenuation at sea level from 0 to 1.5 THz (Pressure = 1013.25 hPa, temperature = 15ºC, water-vapour density = 7.5 g/m3 2.3 Path Attenuation Through the Clear Atmosphere from Sea Level The total path attenuation through the clear atmosphere has been calculated by dividing the atmosphere into layers, each with defined pressure, temperature, water-vapour density, and concentrations of other, minor, atmospheric molecules including O, CO , CO, CH , N O, 3 2 4 2 NH , NO and SO . Pressure and temperature are defined using the U.S. Standard 3 2 2 Atmosphere (1976), while an exponential model is used for water vapour, with a scale height of 2 km. Figures 2.2a and 2.2b show the resulting path attenuations for vertical transmission paths and at 30º elevation. Figures 2.2c and 2.2d show the same data on different scales to highlight the window regions in the infra-red region 7 Theoretical Appraisal of the Highest Usable Frequencies . FIGURE 2.2a Path attenuation at 90º elevation US Standard Atmosphere, 7.5 g/m3 FIGURE 2.2b Path attenuation at 30º elevation US Standard Atmosphere, 7.5 g/m3 8

Description:
Deep Convection. Nimbostratus. S trato cum ulus. S tratu s. Light Cumulus. Altocumulus. Altostratus. Percentage of total daytime ordinate is exceeded.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.