Filtering, Approximation and Portfolio Optimization for Shot-Noise Models and the Heston Model Oleksandra Putyatina Department of Mathematics University of Kaiserslautern Vom Fachbereich Mathematik der TU Kaiserslautern zur Verleihung des akademisches Grades Doktor der Naturwissenschaften (Doctor rerum naturalium, Dr. rer. nat.) genehmigte Dissertation Referees: Prof. Dr. J. Sass, University of Kaiserslautern Prof. Dr. W. J. Runggaldier, Universit degli Studi di Padova, Italy Date of defence: September 24, 2012 D 386 Acknowledgements I would like to express gratitude, great appreciation and respect to my supervisor Prof. Dr. Jo¨rn Sass for excellent supervision of my PhD studies, for giving valuable recommendations and useful pieces of advice. Special thanks to my parents Dr. Galyna Putyatina and Prof. Dr. Yev- geniy Putyatin for continuous support, encouragement and advice. I am very gratefull to my husbend Andrey Botsman for his patience. I am grateful to my brother Dr. Vladyslav Putyatin and his family for encouraging me. I also acknowledge DAAD for giving me the opportunity to do PhD re- search in financial mathematics. I would like to thank Dr. Falk Triebsch for the help. This thesis was printed with the financial support of DAAD. 1 Abstract Weconsideracontinuoustimemarketmodelinwhichstockreturns satisfy a stochastic differential equation with stochastic drift, e.g. fol- lowing an Ornstein-Uhlenbeck process. The driving noise of the stock returns consists not only of Brownian motion but also of a jump part (shot noise or compound Poisson process). The investor’s objective is to maximize expected utility of terminal wealth under partial infor- mation which means that the investor only observes stock prices but doesnotobservethedriftprocess. Sincethedriftofthestockpricesis unobservable, it has to be estimated using filtering techniques. E.g., if the drift follows an Ornstein-Uhlenbeck process and without jump part, Kalman filtering can be applied and optimal strategies can be computedexplicitly. Alsoinothercases,likeforanunderlyingMarkov chain, finite-dimensional filters exist. But for certain jump processes (e.g. shot noise) or certain non- linear drift dynamics explicit computations, based on discrete obser- vations, are no longer possible or existence of finite dimensional filters is no longer valid. The same computational difficulties apply to the optimal strategy since it depends on the filter. In this case the model maybeapproximatedbyamodelwherethefilterisknownandcanbe computed. E.g.,weusestatisticallinearizationfornon-lineardriftpro- cesses, finite-state-Markov chain approximations for the drift process and/or diffusion approximations for small jumps in the noise term. In the approximating models, filters and optimal strategies can often be computed explicitly. We analyze and compare different ap- proximation methods, in particular in view of performance of the cor- responding utility maximizing strategies. 2 Abstract Wir betrachten ein zeitstetiges Marktmodell, in dem Renditen der Aktien einer stochastischen Differentialgleichung mit stochastis- cher Drift genu¨gen, die einem Ornstein-Uhlenbeck Prozess folgt. Die St¨orungen der Renditen der Aktien ergeben sich nicht nur aus einer Brownschen Bewegung, sondern auch aus Spru¨ngen (Shot-Noise- oder zusammengesetzter Poisson-Prozess). Das Ziel eines Investors ist, die Maximierung des erwarteten Nutzens des Endverm¨ogens unter partieller Information. Das bedeuted, dass ein Investor nur Aktien- preise und nicht die Werte der Drift beobachtet. Da die Drift der Aktienpreise nicht beobachtet wird, muss die Drift gefiltert werden. Beispielsweise,wenndieDrifteinemOrnstein-UhlenbeckProzessohne Spru¨nge folgt, kann der Kalman-Filter angewendet werden und die optimalen Strategien k¨onnen explizit berechnet werden. Endlichdi- mensionale Filter existieren auch in anderen F¨allen, wie, zum Bespiel fu¨r Markov Ketten. Aber fu¨r manche Sprungprozesse (z.B. Shot-Noise) oder fu¨r nicht- lineare Driftdynamik sind explizite Berechnungen, die auf diskreten Beobachtungen basieren, nicht mehr m¨oglich oder die Existenz der endlichdimensionalenFilteristnichtmehrgegeben. DieselbenRechen- schwierigkeiten kommen auch bei den optimalen Strategien vor, weil diese von den Filtern abh¨angen. In diesem Fall kann das Modell von einem anderen Modell mit bekanntem Filter approximiert werden. BeispielsweisebenutzenwirstatistischeLinearisierungfu¨rnichtlineare Driftprozesse, Approximationen mit der endlichen Markov Kette fu¨r Driftprozesse und/oder Approximationen mit der Diffusion fu¨r kleine Spru¨nge. IndenApproximationsmodellenk¨onnenFilterundoptimaleStrate- gien oft explizit berechnet werden. Wir analysieren und vergleichen unterschiedliche Approximationsmethoden, vor allem im Hinblick auf die Gu¨te der entsprechenden Strategien fu¨r die Maximierung des er- warteten Nutzens. 3 Contents List Of Figures 10 List Of Tables 11 Introduction 12 I Some results and definitions from filtering, L´evy processes and portfolio optimization 14 1 Filtering theory overview 14 1.1 The filtering problem . . . . . . . . . . . . . . . . . . . . . . . 14 1.2 Unnormalized conditional distribution . . . . . . . . . . . . . 16 1.3 The Zakai and Kushner-Stratonovich equations . . . . . . . . 17 1.4 Finite-Dimensional Filters . . . . . . . . . . . . . . . . . . . . 20 1.4.1 Kalman-Bucy filter . . . . . . . . . . . . . . . . . . . . 20 1.4.2 Beneˇs filter . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4.3 Wonham filter . . . . . . . . . . . . . . . . . . . . . . . 24 1.5 Numerical methods for solving the non-linear filtering problem 26 1.5.1 Extended Kalman filter . . . . . . . . . . . . . . . . . . 26 1.5.2 The spectral approach to solving the filtering problem . 27 1.5.3 Thepartialdifferentialequationmethodforsolvingthe Zakai equation . . . . . . . . . . . . . . . . . . . . . . 29 1.6 Markov Chain approximations for solving the non-linear fil- tering problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.6.1 Continuous-time Markov chain approximation for non- linear filtering problem without jumps . . . . . . . . . 30 1.6.2 Continuous-time Markov chain approximations for the non-linear filtering problem with discontinuous obser- vations . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2 Introduction to L´evy processes 37 3 Non-linear filtering problems for L´evy processes 40 3.1 The case when the unobservable process follows the diffusion process and the observation process follows the jump-diffusion process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 The case when the unobservable process follows the jump- diffusion process and the observation process follows the dif- fusion process . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 4 Portfolio optimization 44 4.1 Solving the optimal portfolio problem . . . . . . . . . . . . . . 47 5 Summary of Part I 49 II Filtering, approximation, portfolio optimization for jump-diffusions 50 6 Filtering shot noise process 50 6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.2 Definition of the shot-noise process and asset price model with shot noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3 Differential form of the shot noise process . . . . . . . . . . . . 52 6.4 Approximating shot noise process . . . . . . . . . . . . . . . . 55 6.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 58 6.6 Filtering of multi-dimensional asset price model with shot noise process as jump part (first version) and numerical ex- periments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.7 Filtering of multi-dimensional asset price model with shot noise process as jump part (second version) and numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7 Portfolio optimization for shot-noise driven processes 71 7.1 Portfolio optimization for an asset price model with approxi- mation of shot noise process . . . . . . . . . . . . . . . . . . . 71 7.1.1 Solving portfolio optimization problem under full in- formation . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.1.2 Solving portfolio optimization problem under partial information . . . . . . . . . . . . . . . . . . . . . . . . 80 7.1.3 Solving portfolio optimization problem for the case κ (cid:54)= δ 81 7.1.4 Logarithmic utility function . . . . . . . . . . . . . . . 83 7.2 Portfolio optimization for the case when asset price model is influenced by shot noise process . . . . . . . . . . . . . . . . . 85 7.2.1 Portfolio optimization for shot noise without approxi- mation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2.2 Approximation of the optimal portfolio strategy and the value function . . . . . . . . . . . . . . . . . . . . . 89 7.2.3 Verification result for the theoretical solution to the portfolio optimization problem (without approximation) 92 7.2.4 Logarithmic utility function . . . . . . . . . . . . . . . 96 5 7.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 96 7.4 Theoreticalextension: Portfoliooptimizationforthecasewhen asset price is influenced by shot noise process: observing big jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8 Compound Poisson process as a noise term of the asset price: filtering and portfolio optimization 105 8.1 Filtering problem with compound Poisson process as a noise term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8.2 Portfolio optimization for the case when asset price model is driven by compound Poisson process: theoretical solution . . . 112 9 Summary of Part II 117 III Filtering and Portfolio Optimization for Hes- ton’s Stochastic Volatility Model 118 10 Filtering of Heston model 118 10.1 Heston model . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 10.2 Method of statistical linearization . . . . . . . . . . . . . . . . 119 10.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 121 11 Portfolio optimization for Heston model 126 11.1 Portfolio optimization for Heston model under full information 126 11.2 Portfolio optimization for Heston model under partial infor- mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 11.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 131 12 Filtering of Heston model with switching of states 135 12.1 Switching in the stochastic volatility process . . . . . . . . . . 135 12.1.1 StatisticalinferenceforMarkovSwitchingmodelinthe stochastic volatility process . . . . . . . . . . . . . . . 135 12.1.2 Numericalsimulationsofswitchinginstochasticvolatil- ity process . . . . . . . . . . . . . . . . . . . . . . . . . 138 12.2 Switching of states in the asset price process . . . . . . . . . . 142 12.2.1 StatisticalinferenceforMarkovSwitchingmodelinthe asset price process . . . . . . . . . . . . . . . . . . . . 142 12.2.2 Numerical simulations of switching in the asset price process . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 13 Summary of Part III 146 6 14 Conclusion 147 7 List of Figures 1 Stock price behavior with the effects of the shot noise (first example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2 True and filtered behavior of the drift process µ (first example) 60 t 3 Stock price behavior with the effects of the shot noise (second example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 True and filtered behavior of the drift process µ (second ex- t ample) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5 Price behavior of the first stock with the effects of the shot noise in the two dimensional model . . . . . . . . . . . . . . . 63 6 True and filtered behavior of the drift process µ of the first t stock in the two dimensional model . . . . . . . . . . . . . . . 64 7 Price behavior of the second stock with the effects of the shot noise in the two dimensional model . . . . . . . . . . . . . . . 64 8 True and filtered behavior of the drift process µ of the second t stock in the two dimensional model . . . . . . . . . . . . . . . 65 9 Twodynamicsofassetpricesinfluencedbythemixtureofshot noise processes (first example) . . . . . . . . . . . . . . . . . . 67 10 True and filtered behavior of the drift process µ of the first t asset (first example) . . . . . . . . . . . . . . . . . . . . . . . 68 11 True and filtered behavior of the drift process µ of the second t asset (first example) . . . . . . . . . . . . . . . . . . . . . . . 68 12 Twodynamicsofassetpricesinfluencedbythemixtureofshot noise processes (second example) . . . . . . . . . . . . . . . . 69 13 True and filtered behavior of the drift process µ of the first t asset (second example) . . . . . . . . . . . . . . . . . . . . . . 70 14 True and filtered behavior of the drift process µ of the second t asset (second example) . . . . . . . . . . . . . . . . . . . . . . 70 15 Asset price behaviour (first example) . . . . . . . . . . . . . . 97 16 True and filtered drift processes (first example) . . . . . . . . 98 17 Optimal startegies (first example) . . . . . . . . . . . . . . . . 98 18 Wealth processes (first example) . . . . . . . . . . . . . . . . . 99 19 Asset price behaviour (second example) . . . . . . . . . . . . . 100 20 True and filtered drift processes (second example) . . . . . . . 100 21 Optimal startegies (second example) . . . . . . . . . . . . . . 101 22 Wealth processes (second example) . . . . . . . . . . . . . . . 101 23 Compound Poisson process (first example) . . . . . . . . . . . 109 24 Dynamics of asset price influenced by compound Poisson pro- cess (first example) . . . . . . . . . . . . . . . . . . . . . . . . 109 25 True and filtered behavior of the drift process µ (first example)110 t 8 26 Compound Poisson process (second example) . . . . . . . . . . 110 27 Dynamics of asset price influenced by compound poisson pro- cess (second example) . . . . . . . . . . . . . . . . . . . . . . . 111 28 True and filtered behavior of the drift process µ (second ex- t ample) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 29 AssetpricebehaviourinfluencedbycompoundPoissonprocess (third example) . . . . . . . . . . . . . . . . . . . . . . . . . . 115 30 True and filtered drift processes (third example) . . . . . . . . 115 31 Optimal startegies (third example) . . . . . . . . . . . . . . . 116 32 Wealth processes (third example) . . . . . . . . . . . . . . . . 116 33 Stochastic volatility of the asset price: original and linearized processes (first example) . . . . . . . . . . . . . . . . . . . . . 122 34 Simulated returns of the stock price process: Heston model and linearized version of Heston model (first example) . . . . . 122 35 Stock price process (first example) . . . . . . . . . . . . . . . . 122 36 True and filtered stochastic volatility processes (first example) 123 37 Stochastic volatility of the asset price: original and linearized processes (second example) . . . . . . . . . . . . . . . . . . . . 123 38 Simulated returns of the stock price process: Heston model and linearized version of Heston model (second example) . . . 123 39 Stock price process (second example) . . . . . . . . . . . . . . 124 40 Trueandfilteredstochasticvolatilityprocesses(secondexample)124 41 Stock price process driven by Heston model . . . . . . . . . . 132 42 Trueandfilteredstochasticvolatilityprocessofthestockprice driven by Heston model . . . . . . . . . . . . . . . . . . . . . 133 43 Optimal portfolio strategies for Heston model (under full and partial information and statistically linearized strategy) . . . . 133 44 Wealth processes for Heston model under three different opti- mal portfolio strategies . . . . . . . . . . . . . . . . . . . . . . 134 45 Stochastic volatility (with switching of states) of the asset price: original and linearized processes (first example) . . . . . 138 46 Simulated returns of the stock price process: Heston model and linearized version of Heston model (first example) . . . . . 139 47 Stock price process (first example) . . . . . . . . . . . . . . . . 139 48 True and filtered stochastic volatility processes with switching of states (first example) . . . . . . . . . . . . . . . . . . . . . 139 49 Stochastic volatility (with switching of states) of the asset price: original and linearized processes (second example) . . . 140 50 Simulated returns of the stock price process: Heston model and linearized version of Heston model (second example) . . . 140 51 Stock price process (second example) . . . . . . . . . . . . . . 141 9
Description: