ebook img

Filter-based measurement of light absorption by brown carbon in PM 2.5 in a megacity in South China PDF

2018·2.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Filter-based measurement of light absorption by brown carbon in PM 2.5 in a megacity in South China

ScienceoftheTotalEnvironment633(2018)1360–1369 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Filter-based measurement of light absorption by brown carbon in PM 2.5 in a megacity in South China ShengLia,c,MingZhua,c,WeiqiangYanga,c,MingjinTanga,XueliangHuanga,YuegangYua,HuaFanga,c, XuYua,c,QingqingYua,c,XiaoxinFud,WeiSonga,b,YanliZhanga,b,XinhuiBia,XinmingWanga,b,c,⁎ aStateKeyLaboratoryofOrganicGeochemistry,GuangdongKeyLaboratoryofEnvironmentalProtectionandResourcesUtilization,GuangzhouInstituteofGeochemistry,ChineseAcademyof Sciences,Guangzhou510640,China bCenterforExcellenceinRegionalAtmosphericEnvironment,InstituteofUrbanEnvironment,ChineseAcademyofSciences,Xiamen361021,China cUniversityofChineseAcademyofSciences,Beijing100049,China dSchoolofEnvironmentandResource,SouthwestUniversityofScienceandTechnology,Mianyang621010,China H I G H L I G H T S G R A P H I C A L A B S T R A C T • Filter-basedmeasurementoflightab- sorptionbyBrCandBC. • Larger seasonal variation of light ab- sorptionbyBrCinruralsites. • Biomass burning was a significant sourceofBrCinautumn. • SecondaryformationofBrCmightbe greaterinsummerthaninautumn. • HigherapparentMAEforECatsitesim- pactedbyfossilfuelcombustion. a r t i c l e i n f o a b s t r a c t Articlehistory: Carbonaceousaerosolsrepresentanimportantnexusbetweenairpollutionandclimatechange.Herewecol- Received11January2018 lectedfilter-basedPM samplesduringsummerandautumnin2015atoneurbanandtworuralsitesinGuang- 2.5 Receivedinrevisedform20March2018 zhou,amegacityinsouthernChina,andgotthelightabsorptionbyblackcarbon(BC)andbrowncarbon(BrC) Accepted20March2018 resolvedwithaDRIModel2015multi-wavelengththermal/opticalcarbonanalyzerapartfromdetermining Availableonline3April2018 theorganiccarbon(OC)andelementalcarbon(EC)contents.OnaverageBrCcontributed12–15%ofthemea- suredabsorptionat405nm(LA )duringsummerand15–19%duringautumnwithsignificantincreasein Editor:JianminChen 405 theLA byBrCattheruralsites.Carbonaceousaerosols,identifiedastotalcarbon(TC),yieldedaveragemass 405 Keywords: absorptionefficiencyat405nm(MAE405)thatwereapproximately45%higherinautumnthaninsummer,an Browncarbon 83%increasewasnotedintheaverageMAE405forOC,comparedwithanincreaseofonly14%intheaverage Blackcarbon MAE forEC.TheLA byBrCshowedagoodcorrelation(pb0.001)withtheratiosofsecondaryOCto 405 405 Elementalcarbon PM insummer.However,thiscorrelationwaspoor(pN0.1)inautumn,implyinggreatersecondaryformation 2.5 PM2.5 ofBrCinsummer.Thecorrelationsbetweenlevoglucosan(amarkerofbiomassburning)andtheLA405byBrC Lightabsorption weresignificantduringautumnbutinsignificantduringsummer,suggestingthattheobservedincreaseinthe Guangzhou LA byBrCduringautumninruralareaswaslargelyrelatedtobiomassburning.Themeasurementsoflightab- 405 sorptionat550nmpresentedinthisstudyindicatedthattheuseoftheIMPROVEalgorithmwithanMAEvalueof ⁎ Correspondingauthor. E-mailaddress:[email protected](X.Wang). https://doi.org/10.1016/j.scitotenv.2018.03.235 0048-9697/©2018ElsevierB.V.Allrightsreserved. S.Lietal./ScienceoftheTotalEnvironment633(2018)1360–1369 1361 10m2/gforECtoapproximatelightabsorptionmaybeappropriateinareasnotstronglyaffectedbyfossilfuel combustion;however,thispracticewouldunderestimatetheabsorptionoflightbyPM inareasheavilyaf- 2.5 fectedbyvehicleexhaustsandcoalburning. ©2018ElsevierB.V.Allrightsreserved. 1.Introduction etal.,2016).Thesecondmethodinvolvesmeasuringthetransmission oflightthroughparticle-loadedfilterstoquantifyaerosolopticalprop- Atmosphericaerosols,whichdispersegloballybutdisplaysignifi- ertiesusinginstrumentsincludingparticlesootabsorptionphotometer cantregionalvariations,impacttheradiativeforcingreceivedbythe (PSAP)(Bondetal.,1999),multi-angleabsorptionphotometer(MAAP) Earthbothdirectly (by enhancing thescatteringandabsorption of (PetzoldandSchonlinner,2004),multi-wavelengthabsorbanceana- solarradiation)andindirectly(throughtheirimportantrolesincloud lyzer(MWAA)(Massaboetal.,2013),aethalometers(Hansenetal., condensationandasicenuclei)(Akimoto,2003;Ramanathanetal., 1984)and,mostrecently,multi-wavelengththermal/opticalcarbonan- 2001).Carbonaceousaerosols,whichrepresentanimportantpartofat- alyzers(Chenetal.,2015). mosphericparticulatematter,areverycomplexmixtures.Theyaretyp- TheburningofbiomassandbiofuelcontributesubstantiallytoBrC icallydividedintoorganiccarbon(OC)andblackcarbon(BC)(Chung (Gustafssonetal.,2009;Lacketal.,2012;Mohretal.,2013;Liuetal., andSeinfeld,2002).Manystudieshavedemonstratedthatcarbona- 2015;Moketal.,2016),andnearly3billionpeople,mostlyindevelop- ceousaerosolsareresponsibleforalargefractionofthelightabsorbed ingcountries,stillburnvarioustypesofbiomasstocooktheirfoodand byairborneparticles(Trijonis,1982;Shahetal.,1984;Malmetal., heattheirhomes(Subramanian,2014).Thus,theoccurrenceandeffects 1994;Novakovetal.,1997).BCisconsideredtobethemajorcarbona- ofBrCfromopenandresidentialburningofbiomassisalsoofincreasing ceous aerosol component that efficiently absorbs visible concern.However,dataonairborneBrCinthedenselypopulateddevel- (400–700nm)light(Kirchstetteretal.,2004).MostOCabsorbslight opingcountries,includingChina,arefarfromsufficient.Ithasbeenes- stronglyintheinfrared(IR)andultraviolet(UV)rangesbutisrelatively timated that the annual mean atmospheric burden of BrC exceeds transparentinthevisibleandnear-IRranges(Laskinetal.,2015).How- 4mgm−2intheeasternandsouthernregionsofChina(Fengetal., ever,anumberofrecentstudieshavefoundthatsometypesofOCcan 2013).FieldworksalsohaveshownthatBrCcontributed10–30%to absorblightinUV–visibleranges(AndreaeandGelencser,2006;Bond totalaerosollightabsorptionintheBeijing-Tianjin-Hebeiregionin and Bergstrom, 2006; Ramanathan et al., 2007; Feng et al., 2013). northChina(Yangetal.,2009;Chengetal.,2011;Duetal.,2014a, These types of OC are termed brown carbon (BrC) (Pöschl, 2005; 2014b). In the Pearl River Delta (PRD) region, which is one of the AndreaeandGelencser,2006),whichincludespolycyclicaromatics,at- world's largest megacities and lies in southern China, Yuan et al. mospherichumic-likesubstances(HULIS)andbiopolymers.Fieldmea- (2016)recentlymeasuredtheabsorptionoflightbyaerosolparticles surementssuggestthatBrCmaycontributeapproximately10–30%of usinga3-wavelengthphotoacousticsootspectrometer;theresultssug- thetotalabsorptionbycarbonaceousaerosolsatnear-UVwavelength gestthatBrCcontributesN10%ofthetotalaerosollightabsorptionat andapproximately10%atawavelengthof550nm(Bahaduretal., shorterwavelengthsinthisregion.Consideringthespatialandtemporal 2012;Lacketal.,2012;Washenfelderetal.,2015).BrCmayevenbere- imbalancesinthesourcesandpropertiesofBrCintheambientair,field sponsibleforN50%ofthetotallightabsorptionat370nmandapproxi- measurementsintendedtocharacterizeBrCareurgentlyneededin mately15%ofthetotallightabsorptionatthemiddlewavelengths China. duringbiomassburningevents(Favezetal.,2009).Aglobalmodeling Inthisstudy,aDRIModel2015Multi-wavelengthCarbonAnalyzer studysuggeststhatBrCcouldcontributeupto+0.25Wm−2or19% wasusedtomeasurethelightabsorptionbyBrCinPM collectedon 2.5 oftheabsorptionbyanthropogenicaerosols(Fengetal.,2013).Conse- quartzfiltersatthreesites(oneurbansiteandtworuralsites)inthe quently,theopticalpropertiesofBrCneedtobeexplicitlyincludedin PRDregion.Althoughthisoff-linemethoddoesnotevaluatetheeffects modelstoaccuratelyrepresenttheradiativeforcingproducedbyaero- ofparticlesizeandmorphologyontheaerosollightabsorption,itpro- sols(Alexanderetal.,2008). videsasimpleandconvenientmeansofmeasuringthelightabsorption BrC is relatively inefficient in absorbing light in the near-UV ofBrCbasedontheopticalnatureofthebulkparticlesonfilters.Theef- (300–400nm)andvisiblerangeswhencomparedtoBC,anditseffi- fectsofthequartzfiltersonthemeasurementscanbecalculatedandex- ciencydecreasesasthewavelengthincreases(Formentietal.,2003; cludedusingempiricalformulasdevelopedforthermal/opticalanalysis. Kirchstetteret al.,2004;AndreaeandGelencser, 2006;Yanget al., Thisstudyfocuson:1)estimatingthecontributionsbyBrCtolightab- 2009).BrCcanoriginatefromprimaryemissions,suchasbiomassand sorptioninamegacityinsouthernChinausingfilter-basedsamples biofuel burning (Bond, 2001; Bergstrom et al., 2007; Laskin et al., and2)investigatingthespatialandseasonalvariationsintheabsorp- 2015),anditcanalsobesecondarilyformedbymultiphasereactions tionoflightbyBrCaswellasthefactorsthatinfluencetheamountof (Noziereetal.,2007;NoziereandEsteve,2007;DeHaanetal.,2009; lightitabsorbs. DeHaanetal.,2011;Nguyenetal.,2012;Leeetal.,2013;Drozdand McNeill,2014;Powelsonetal.,2014;Tangetal.,2016).Detailedcharac- 2.Samplingandanalysis terizationofBrCisdifficultbecauseofitsinherentchemicalcomplexity andthemixingstatewithothersubstances(Laskinetal.,2015). 2.1.Descriptionofthesamplingsites LightabsorptionbyBCandBrCcanbedifferentiatedbytheabsorp- tionAngstörmexponent(AAE)values,assumingthattheAAEvaluesof ThePRDregionhasbecomethelargesturbanareaintheworldin BC (sometimes alsotermedelemental carbon orEC)arecloseto 1 termsofbothsizeandpopulation(WorldBank,2015).Therapidgrow- (Bergstrom et al., 2002; Bond and Bergstrom, 2006; Drozd and ingindustryandeconomyintheregionhasbeenaccompaniedbylarge McNeill,2014).TherearetwowaystomeasurelightabsorptionofBrC emissionsofprimarypollutants(ChanandYao,2008),includinglight- basedonAAEvalues.Onemethodinvolvesdirectmeasurementsof absorbingBCandBrC,whichhaveclimaticeffects.Theregionexperi- theextinctionandabsorptioncoefficientsofaerosolparticlesbyinstru- ences a typical Asian monsoon climate; hot and humid conditions mentssuchascavityring-downspectroscopy(CRDS)(Schereretal., occurinthesummerwhentheSouthChinaSeamonsoonisdominant, 1997),cavity-enhancedabsorptionspectroscopy(CEAS)(Moosmuller andrelatively cool anddryconditionsoccurinthefallandwinter, etal.,2005;Washenfelderetal.,2013)andphotoacousticabsorption whichfeatureprevailingnortheasterlymonsoonwindsfromnorthern spectrometer(PAAS)(Arnottetal.,1999;Flowersetal.,2010;Yuan China(DingandChan,2005). 1362 S.Lietal./ScienceoftheTotalEnvironment633(2018)1360–1369 Thethreesamplingsitesinthisworkincludeoneurbansiteinthe usingaDRIModel2015multi-wavelengththermal/opticalcarbonana- citycenter(SZ;23.13°N,113.27°E)andtworuralsites,oneinthe lyzer(DesertResearchInstitute,Nevada,USA)withtheIMPROVE_A smalltownofJiulong,whichislocatedinthenortheasternportionof protocol (Chow et al., 2007; Chow et al., 2011). Four OC fractions Guangzhou(JL;23.30°N,113.57°E)andanotherinasmalltownof (OC1,OC2,OC3,andOC4withcuttingtemperatureof140,280,480, Wanqingsha in the central portion of the PRD (WQS; 22.71° N, and580°C,respectively,inaheliumatmosphere)andthreeECfractions 113.55°E).TheirgeographicallocationsareshowninFig.1.SZandJL (EC1,EC2,andEC3withcuttingtemperatureof580,740,and840°C,re- aretwostationsinthegovernmentalambientairqualitymonitoring spectively,ina2%oxygen/98%heliumatmosphere).Thedetailedproce- networkinGuangzhou,andthelocationofWQSenablesthemonitoring duresfortheOC/ECanalysisaredescribedinChenetal.(2015). oftheregionalbackgroundairpollutioninthePRDregion.Detailedde- LightabsorptionwasalsomeasuredbytheDRIModel2015multi- scriptionsofthesamplingsitescanbefoundelsewhere(Zhangetal., wavelengththermal/opticalcarbonanalyzer.Theanalyzerequipped 2012,2013;Yuetal.,2016). sevendiodelaserswithwavelengthsof405,455,532,635,780,808 and980nmtomonitorspectralreflectanceandtransmittanceoffilter 2.2.Samplecollection samples.SinceBrCisweakinabsorbinginfraredlight,wechosethe light absorption at 405, 455 and 635 nm for the discussion in this FieldsamplingwasconductedfromAugust11toAugust31(inthe study(lightabsorptionat532nmwasnotincludedduetoinsufficient summer)andfromNovember1toNovember20(intheautumn)in detectorsignal-to-noiseratioratios)(Chenetal.,2015).Mostprevious 2015.The24-hPM sampleswerecollectedsimultaneouslyatthe studieshaveusedtransmittanceattenuation(ATN)toestimatelightab- 2.5 threesitesusinghigh-volume samplers(Tisch Environmental, Inc., sorptionbyparticlesonafilter: OH,USA)withaconstantflowrateof1.1m3min−1.ThePM samples 2.5 (cid:1) (cid:3) UwKe)re,wcohlilcehctwederoenp2re0-.3ba×ke2d5.a4tc4m50q°uCarftozrfi6ltherbse(foWrehuatsme.an,Mainstone, ATNλ¼− ln FFTTλλ;;if ð1Þ 2.3.Chemicalanalysisandlightabsorptionmeasurement whereFTλ,iandFTλ,farethefiltertransmittancemeasuredbeforeand Sulfate,nitrateandammoniumwereanalyzedwithanionchro- maftiettratnhceermofaalabnlaanlyksifisl,treers.pDeucteivteolyfi;ltaenrdefFfTeλc,tfsa,ptphreoaxbimsoartpetsiothneotprtaincsa-l matograph(883BasicICplus,Metrohm,Switzerland)(Fuetal.,2016). depthcannotbedirectlyobtainedfromATNatagivenwavelength. The detailed procedure for chemical analysis is given in Fu et al. Chenetal.(2015)arguedthattherelationshipbetweentheabsorption (2015).Detailedproceduresfortheanalysisoflevoglucosanarede- opticaldepthτ andATNisquadratic: scribedelsewhere(Yuetal.,2016).Briefly,filtersampleswereextracted a by sonication with dichloride methane/methanol (1:1, v/v), and derivatized(silylation)with100μLofpyridineand200μLofN,O-bis- τa;λ¼Aλ(cid:2)ATN2λþBλ(cid:2)ATNλ ð2Þ (trimethylsilyl)-trifluoroacetamide (BSTFA) plus 1% trimethylchlorosilane. The silylated extracts were analyzed by an whereτa,λistheabsorptionopticaldepthatwavelengthλ,andAλand Agilent7890/5975Cgaschromatography/massspectrometerdetector Bλ are coefficients that include wavelength-specific multiple- (GC/MSD) equipped with an HP-5 MS capillary column (30 m × scatteringandloadingeffects.ThevaluesofAλandBλwerereported 0.25mm×0.25mm).ForthemeasurementsofOCandEC,acircular inChenetal.(2015).Therelationshipbetweenτa,λandATNλcouldbe punch (0.8 cm in diameter) of each filter was taken and analyzed appliedtoambientsamplestocalculateτa,λ(Chenetal.,2015). Fig.1.Geographicallocationsofthethreesamplingsites(SZ,JL,andWQS)inthePearlRiverDelta(PRD)region.ThelocationofthePRDregioninChinaisshowedinthebottomright corner. S.Lietal./ScienceoftheTotalEnvironment633(2018)1360–1369 1363 SinceBCandBrCarethelight-absorbingmaterialsinaerosolsam- 18.2and12.7Mm−1atWQS,respectively.Duringautumn,theaverage ples,asimplifiedtwo-componentmodelcanbeusedtorepresentthe total lightabsorption at 405,455 and 635 nm were 56.6, 47.8and opticalabsorption(Chenetal.,2015): 32.8Mm−1atSZ,56.3,46.7and31.3Mm−1atJLand44.9,37.4and 25.7Mm−1atWQS,respectively.Theseresultsarecomparabletoaero- τa; λ¼KBC(cid:2)λ−AAEBCþKBrC(cid:2)λ−AAEBrC ð3Þ solopticalabsorptionvaluesmeasuredinthePRDregionin2014by Yuanetal.(2016)usinga3-wavelengthphotoacousticsootspectrome- whereτa,λistheabsorptionopticaldepthatwavelengthλ;KBCandKBrC ter.Theyobservedthattheaveragelightabsorptionat405nm(LA405) arethefittingcoefficientsforBCandBrC;andAAEBCandAAEBrCarethe atHeshan(aruralsite)was32.5Mm−1fromNovember1toNovember AAEvaluesofBCandBrC,respectively.Theabsorptionopticaldepthsat 22,whereasthatatShenzhen(anurbansite)was21.6Mm−1fromSep- awavelengthλforBCandBrC(τa,λ,BCandτa,λ,BrC,respectively)canbe tember12toOctober9and25.6Mm−1fromJanuary15toFebruary19 expressedas (Yuanetal.,2016). ConsideringthatBCplaysamajorroleintheabsorptionoflightby τa; λ;BC¼KBC(cid:2)λ−AAEBC ð4Þ aerosols(Cappaetal.,2012;Chungetal.,2012;Bondetal.,2013),the totalaerosollightabsorptionisexpectedtobelargelycontrolledbythe and BCconcentrationsatthethreesites.SZislocatedinthecitycenter,andan- thropogenicemissionsfromvehicleexhaustandindustrialactivitiesthere τa; λ;BrC¼KBrC(cid:2)λ−AAEBrC ð5Þ arethehighestamongthethreesitesexaminedinthisstudy.Morespecif- ically,industrialactivitiesandtransportationhavebeenestimatedtoac- whereτa,λ,BCandτa,λ,BrCaretheabsorptionopticaldepthsofBCandBrC, count for 70% of the total BC emission in Guangzhou (Verma et al., respectively,atawavelengthλ.Inthisstudy,weassumethatAAEvalue 2010).Therefore,theaveragetotallightabsorptionatSZwassignificantly ofBCisequalto1(Bergstrometal.,2002;BondandBergstrom,2006; higherthanthatatJLandWQSinsummer.Fromsummertoautumn,the DrozdandMcNeill,2014).ThefittingcoefficientsinEq.(3)wereob- aerosolLA byPM increasedby38%,92%and115%atSZ,JLandWQS, tainedforAAE valuesbetween2and8byleast-squarelinearregres- 405 2.5 BrC respectively,whichispartlyattributedtothechangesinatmospheric sion,andtheAAE thatledtothebestfitwasselectedasthevalidAAE BrC boundarylayerheight.However,theseasonalvariationsinthelightab- ofBrC.Asanexample,theτa,λdecompositionasafunctionofwave- sorptionbyPM aremorepronouncedattheruralsites,suggesting lengthfromasamplecollectedatJLinsummerwasshowninFig.2. 2.5 thatlocalemissionsalsocontributedsubstantiallyinruralareasduring Theambientlightabsorptioncoefficient,b ,canbecalculatedusing abs theautumn.AspointedoutbyHeetal.(2011),biomassburningemis- Eq.(6): sionsoccurprimarilyinruralareaswithinthePRDregionsandaregreater inNovemberthaninAugust(Dingetal.,2012;Yuetal.,2016). A babs¼τa;λ(cid:2)V ð6Þ AsshowninFig.3,higherPM2.5concentrationswerenotassociated withhighertotallightabsorption;forexample,duringperiodofAugust whereAisthefilterareaandVisthesamplingvolume.Moredetailed 20–28,whenthePM2.5concentrationreacheditshighestlevel,theab- descriptionsoftheproceduresandempiricalformulasusedarepro- sorptionoflightbyPM2.5remainedunchangedcomparedtothaton videdinChenetal.(2015). normaldays(Fig.3aandb).Thisobservationmaybelargelyexplained byincreasesintheproportionofscatteringmaterialsinthePM during 2.5 3.Resultsanddiscussion theperiod.Sulfate,nitrateandammonium(SNA)arekeycomponents ofPMthatefficientlyscattervisibleradiation(SeinfeldandPandis, 3.1.LightabsorptionofPM 2006).AsdepictedinFig.3dande,duringthisperiod,themassratios 2.5 ofSNAtoPM increased,whereasthemassratiosofsecondaryOC 2.5 Timeseriesofthetotallightabsorptionatthreewavelengths(405, (SOC)toPM2.5decreasedfurther.Thisresultdiffersfromtheobserva- 455and635nm)indifferentsitesareshowninFig.3.Duringsummer, tionsmadebyYuanetal.(2016);intheirresults,thetotalabsorption theaveragetotallightabsorptionat405,455and635nmwere44.0, oflightbyPM2.5andthemassconcentrationsoforganicaerosolsdisplay 37.5and27.1Mm−1atSZ;29.3,25.4and17.9Mm−1atJL;and20.9, similartrends. BrCfraction BC fraction Measured Fig.2.Antypicalexampleshowingthedecompositionofmeasuredabsorptionopticaldepth(τa,λ)foraPM2.5filtersamplefromtheJLsiteintotheBCandBrCcontributionsbasedontheir distinctspectraldependenceoflightabsorption. 1364 S.Lietal./ScienceoftheTotalEnvironment633(2018)1360–1369 Fig.3.ThetimeseriesofPM2.5lightabsorption(a:WQS;b:SZ;c:JL)incomparisonofthatformassratiosofSOCtoPM2.5(d)andmassratiosofSNA(thesumofsulfate,nitrateand ammonium)toPM2.5(e). 3.2.LightabsorptionbyBrC 12%ofthetotalaerosollightabsorption,respectively.Duringautumn, the average LA by BrC was 8.8, 9.9 and 8.8 Mm−1 at SZ, JL and 405 SeasonalvariationsoftheaverageLA byBrCatthethreesitesare WQS,andBrCaccountedfor15%,19% and 19% of the total aerosol 405 showninFig.4.Duringsummer,theaverageLA byBrCwas6.4,4.3 lightabsorption,respectively.BCisthemainlight-absorbingmaterial 405 and2.3Mm−1atSZ,JLandWQS,andBrCaccountedfor14%,15%and inboththeruralandurbanareas;however,thecontributionofBrCto Fig.4.ResolvedaverageLA405byBrCinthesummerandautumnatthethreesites.Errorbarrepresentstandarddeviation(1σ).Thepercentagesoverthebarsarecontributionpercentages oftotalabsorptionbyBrC. S.Lietal./ScienceoftheTotalEnvironment633(2018)1360–1369 1365 totalaerosollightabsorptionwasespeciallyimportantatshorterwave- 3.3.Seasonalvariationinthemassabsorptionefficiencyofcarbonaceous lengthsandduringautumn.Inautumn,BrCcontributesnearly20%of aerosols thetotalaerosollightabsorptionattheruralsites. TheabsorptionvaluesofBrCwerelowandstableatsiteWQSin Ascarbonaceousaerosolsarethemajorlight-absorbingcomponent summer,likelybecausetheairmassesarrivingatthesitefromthe ofPM (Trijonis,1982;Shahetal.,1984;Malmetal.,1994;Novakov 2.5 oceandrivenbythesummermonsoonswerecleaner.Attheurban etal.,1997),thetotalLA showedahighlysignificant(pb0.001)cor- 405 siteSZ,theaveragelevelofBrCwasthehighestofthethreesitesduring relationwithtotalcarbon(TC=OC+EC)inbothsummerandautumn thesummer,whichisattributabletothehighercontributionoflocal (Fig.5).However,theslopeinsummer(3.42m2/g)waslowerthanthat emissionsinthisurbanarea.Fromsummertoautumn,theaverageab- inautumn(4.95m2/g),indicatingthatcarbonaceousaerosolsinautumn sorptionvaluesofBrCincreased,whichmaybeattributabletothelower absorbedgreateramountsoflightandhadhighermassabsorptioneffi- boundarylayerinautumnthaninsummer.However,astheincreasesat ciency(MAE)value.TheMAEofOCcanbeobtainedbydividingtheOC theruralsiteswerehigherthanthatattheurbansite,theemission concentrationsintothelightabsorptionbyBrC.TheMAEofECcanbe sourcesattheruralsitesarelikelystronger,andbiomassburningisa represented by the ratios of the light absorptions by BC to the EC likelyprimarysource(Heetal.,2011).Previousstudieshavedemon- concentrations. strated thatin rural areasof thePRDregion,theconcentrationsof TheaverageMAE ofECwas11.8m2/ginsummer,andthisquan- 405 levoglucosan,atracerofbiomassburning,weresignificantlyhigherin tityincreasedby13.6%to13.4m2/ginautumn.However,theaverage autumn and winter when compared to those in the summer (Gao MAE ofOCincreasedby83.1%fromsummertoautumn,whenthe 405 etal.,2011;Dingetal.,2012;Yuetal.,2016).Biomassburningisanim- MAE valuewere0.7m2/gand1.3m2/g,respectively.Therefore,the 405 portantsourceofBrC(Gustafssonetal.,2009;Lacketal.,2012;Mohr significantincreaseintheaverageMAEofOCwasthemajorreason etal.,2013;Liuetal.,2015;Moketal.,2016),anditbecamethemajor forthechangeintheaverageMAEofTC.TheaverageSOC/PM in- 2.5 sourceofpolycyclicaromatichydrocarbons,whichareimportantcom- creasedbyonly0.03%,andtheaverageSNA/PM decreasedby1.8%. 2.5 ponentsofBrCduringthewinterinGuangzhou(Yuetal.,2016).At Theseresultsindicatedthatprimaryemissions,insteadofsecondary siteSZ,althoughtheabsorptionbyBrCincreasedfromsummertoau- products,wereprobablythemajorcontributorstotheincreaseinthe tumn,itscontributionstothetotalaerosollightabsorptiondidnot MAEofOC.TheLA byBrCshowedafairlygoodcorrelation(R= 405 showasignificantchange.Thissiteismainlyaffectedbylocalemissions 0.71,pb0.001)withlevoglucosanconcentrationsinautumn,butthis inurbanareas,andmajorsourcesforBCandBrC,includingvehicleex- correlationwasinsignificantinsummer(pN0.1)(Fig.6),suggesting haust,industrialemissionsandresidentialcooking,donotdisplaysig- thatbiomassburningcontributedmoretoBrCinautumnthaninsum- nificantseasonalvariations. mer. A previous study has demonstrated that biomass burning- ApreviousstudyconductedinthePRDregionbyYuanetal.(2016) emittedBrCdisplaysstrongabsorptionatnear-UVwavelengths(Lack suggestedthatinautumnBrCcontributed6.3%oftheLA atShenzhen etal.,2012);therefore,biomassburningmaybeamajorsourceofBrC 405 (anurbansite)and11.7%atHeshan(aruralsite).Thecontributionsby duringtheharvestseasonsandhasasignificanteffectontheenhance- BrCtoaerosollightabsorptioninotherregionsaresimilartothatinthe mentofthelightabsorptionbycarbonaceousaerosolsinthePRDre- PRDregion.Forexample,BrCcontributed~30%ofthetotalaerosolLA gion.AsshowedinFig.7,thecorrelationbetweentheLA byBrC 307 405 and~10%ofthetotalaerosolLA inHebei,China(Yangetal.,2009), andtheSOC/PM ratioswassignificantinsummer(pb0.001)butin- 550 2.5 andBrChasbeenobservedtoaccountfor~10%oftheLA inCalifornia, significantinautumn(pN0.1),indicatingthatsecondaryproductshada 405 USA(Cappaetal.,2012).Generally,thecontributionsofBrCtolightab- greater effect on BrC in summer than in autumn although photo- sorptionarelargerinbackgroundareasthatareimpactedtoagreater bleaching effect would also be very strong in summer (Zhong and degreebybiomassburning.Forexample,thecontributionsofBrCto Jang,2014). aerosolLA areashighas~50%atJeju,SouthKorea(Flowersetal., 405 2010) and 27 ± 15% (at 404 nm) in Boulder, Colorado, USA (Lack 3.4.RelationshipbetweenthelightabsorptionbyPM andEC 2.5 etal.,2012).Lightabsorptionbydustwasexpectedtobenegligible andthusnotconsideredinthisstudy,becausethecontributionofcarbo- TheInteragencyMonitoringofProtectedVisualEnvironments(IM- naceousmaterialstoaerosolmass(N30%)ismuchlargerthanthatof PROVE)projectintheUnitedStatesprovidesasimplemethodtoesti- dust(b5%)(Huangetal.,2014). mate the light extinction coefficient of PM (IMPROVE Report V, 2.5 Fig.5.RelationshipbetweenLA405andTCconcentrationsmeasuredwithfilter-basedPM2.5samplesduringthesummerandautumninGuangzhou. 1366 S.Lietal./ScienceoftheTotalEnvironment633(2018)1360–1369 Fig.6.RelationshipbetweenLA405byBrCandlevoglucosanconcentrationsduringthesummerandautumninGuangzhou. 2011).TheIMPROVEalgorithmwasusedtocalculatethelightabsorp- orderofWQSNSZNJL.TheslopeatJL(10.1m2/g)wasalsothesame tionbyPM withanMAEvalueof10m2/gforEC(IMPROVEReport asthe10m2/gfortheMAEofECusedintheIMPROVEalgorithmtoes- 2.5 V, 2011). This MAE of EC corresponds to a wavelength of 550 nm timatethelightabsorptionbyPM ,andtheslopesatWQSandSZare 2.5 (HandandMalm,2007).However,theMAEintheIMPROVEalgorithm approximately30%higher.Thisresultimpliesthat,inareaslessstrongly isonlyanapproximation,anditsapplicationinsomeheavilypolluted affectedbyfossilfuelcombustion,anMAEvalueof10m2/gforECcanbe areasisunderquestion(Fuetal.,2015). usedtoestimatethelightabsorptionbyPM ;however,theuseofthis 2.5 TherelationshipbetweentheLA byPM andtheECconcentra- valuewouldunderestimatethelightabsorptionbyPM inurbanand 550 2.5 2.5 tionsatthethreesitesareshowninFig.8.ThetotalabsorptionandEC industrialareas. concentrationsaresignificantlycorrelated(R=0.94,0.91and0.98at WQS,SZandJL,respectively;pb0.001)atallthreesites(bothofthe 4.Conclusion ruralsitesandtheurbansite),suggestingthatECmay,infact,bea goodindicatorofthetotallightabsorptionbyPM inGuangzhou. Amulti-wavelengththermal/opticalcarbonanalyzerwasusedto 2.5 However,theslopesatWQS,SZandJLwere13.4,12.8and10.1,respec- determineOC/ECcontents;further,thelightabsorptionbythecarbona- tively.Asdiscussedinsection3.2,theaveragelightabsorptionbyBrC ceousaerosolsinfilter-basedPM samplescollectedatoneurbansite 2.5 rangedfrom12to19%ofthetotallightabsorption,andthecontribution andtworuralsitesinGuangzhou,amegacityinsouthernChina,was percentageswerethereforequitesimilaratthethreesites.Therefore, characterized.ThelightabsorptionsbyBCandBrCweredifferentiated. thedifferentslopesmayresultlargelyfromthedifferentMAEvalues ItisfoundthatBrCcouldcontribute12–15%ofthetotalaerosollightab- forECatthethreesites.Accordingtopreviousstudies,theMAEvalues sorptionat405nmduringthesummer,and15–19%ofthatduringthe oftheECfromdifferentsourcesvaryandtypicallyfollowtheorderof autumn.TheaverageoverallMAEat405nmforcarbonaceousaerosols woodburningbcropstrawburningbvehicleemissionsbcoalbriquette in terms of TC (OC + EC) increased by approximately 45% (from burning(Chengetal.,2011;Shenetal.,2013;Xingetal.,2014).Atsite 3.42m2/ginsummerto4.95m2/ginautumn);theaverageMAEofEC SZinthecitycenter,vehicleemissionsmaybethemajorsourceofEC.At at405nmincreasedbyonlyapproximately14%(from11.8m2/gin siteJL,whichliesinaruralareasurroundedbyforestsandfarmlands, summerto13.4m2/ginautumn)andtheMAE ofOCincreasedap- 405 biomassburningtheremaymakelargercontributionstoEC.Finally, proximately83%(from0.7m2/ginsummerto1.3m2/ginautumn). siteWQSislocatedinasmalltowninthecentralPRDregion,anditis SOC/PM ratiosandtheLA byBrCshowedgoodcorrelations(R 2.5 405 mainlyaffectedbypollutantstransportedfromsurroundingindustrial =0.46,pb0.001)insummerandpoorcorrelationsinautumn(pN cities;theECisderivedlargelyfromvehicleemissionsandcoalburning. 0.1),indicatingthatsecondaryproductsmayhaveagreaterimpacton ThesedifferencesmayexplainwhytheslopesinFig.8displayinthe BrCinsummerthaninautumn.Instead,theLA byBrCshoweda 405 Fig.7.RelationshipbetweenLA405byBrCandSOC/PM2.5duringthesummerandautumninGuangzhou. S.Lietal./ScienceoftheTotalEnvironment633(2018)1360–1369 1367 Fig.8.RelationshipbetweenLA550byPM2.5(calculatedfromtherelationshipbetweenabsorptionandwavelength)andECconcentrationsatthethreesitesinGuangzhou. goodcorrelation(R=0.71,pb0.001)withlevoglucosanconcentrations Bond,T.C.,2001.Spectraldependenceofvisiblelightabsorptionbycarbonaceousparti- inautumnbutapoorcorrelation(pN0.1)insummer,suggestingthat clesemittedfromcoalcombustion.Geophys.Res.Lett.28:4075–4078.https://doi. org/10.1029/2001GL013652. biomassburningcontributesmoretoBrCinautumn. Bond,T.C.,Bergstrom,R.W.,2006.Lightabsorptionbycarbonaceousparticles:aninvesti- Thecorrelationsbetweenthetotalabsorptionat550nmandECcon- gative review. Aerosol Sci. Technol. 40:27–67. https://doi.org/10.1080/ centrationswerehighlysignificantatallofthestudiedsites,butthe 02786820500421521. Bond,T.C.,Anderson,T.L.,Campbell,D.,1999.Calibrationandintercomparisonoffilter- slopesofthetotalabsorptionat550nmtoECvaried,duetothedifferent basedmeasurementsofvisiblelightabsorptionbyaerosols.AerosolSci.Technol. sourcesofECatthethreesites.TheMAEof10m2/gusedforECinthe 30:582–600.https://doi.org/10.1080/027868299304435. IMPROVEalgorithmisapplicableinareaslessaffectedbyfossilfuel Bond,T.C.,Doherty,S.J.,Fahey,D.W.,Forster,P.M.,Berntsen,T.,DeAngelo,B.J.,Flanner, M.G.,Ghan,S.,Karcher,B.,Koch,D.,Kinne,S.,Kondo,Y.,Quinn,P.K.,Sarofim,M.C., combustion,suchassiteJL;however,theuseofthisvalueandalgorithm Schultz,M.G.,Schulz, M.,Venkataraman,C.,Zhang,H.,Zhang,S.,Bellouin,N., mayresultinunderestimatesofthelightabsorptionbyPM inurban Guttikunda,S.K.,Hopke,P.K.,Jacobson,M.Z.,Kaiser,J.W.,Klimont,Z.,Lohmann,U., 2.5 andindustrialareaswithgreatercontributionfromfossilfuel(coal Schwarz,J.P.,Shindell,D.,Storelvmo,T.,Warren,S.G.,Zender,C.S.,2013.Bounding theroleofblackcarbonintheclimatesystem:ascientificassessment.J.Geophys. andoil)combustion,asisthecaseatsitesWQSandSZ. Res.Atmos.118:5380–5552.https://doi.org/10.1002/jgrd.50171. Itshouldbenotedthatthefilter-basedmethodofestimatingthe Cappa,C.D.,Onasch,T.B.,Massoli,P.,Worsnop,D.R.,Bates,T.S.,Cross,E.S.,Davidovits,P., lightabsorptionbyBrCinthisstudyhaslimitations,asdoalternative Hakala,J.,Hayden,K.L.,Jobson,B.T.,Kolesar,K.R.,Lack,D.A.,Lerner,B.M.,Li,S.M., Mellon,D.,Nuaaman,I.,Olfert,J.S.,Petaja,T.,Quinn,P.K.,Song,C.,Subramanian,R., methods.Factorssuchasthesizedistributionofaerosolparticles,their Williams,E.J.,Zaveri,R.A.,2012.Radiativeabsorptionenhancementsduetothe mixingstateandparticlemorphologyimpactaerosollightabsorption mixingstateofatmosphericblackcarbon.Science337:1078–1081.https://doi.org/ butarenot taken into accountin this filter-based method.Further 10.1126/science.1223447. fieldcampaignsthatincludemorecomprehensivemeasurementsof Chan,C.K.,Yao,X.,2008.AirpollutioninmegacitiesinChina.Atmos.Environ.42:1–42. https://doi.org/10.1016/j.atmosenv.2007.09.003. aerosolcompositions,opticalpropertiesandotherphysicochemical Chen,L.W.A.,Chow,J.C.,Wang,X.L.,Robles,J.A.,Sumlin,B.,Lowenthal,D.H.,Zimmermann, propertiesareneededinordertobetterunderstandtheeffectsofBrC R.,Watson,J.G.,2015.Multi-wavelengthopticalmeasurementtoenhancethermal/ opticalanalysisforcarbonaceousaerosol.Atmos.Meas.Tech.8:451–461.https:// inmegacities. doi.org/10.5194/amt-8-451-2015. Cheng,Y.,He,K.B.,Zheng,M.,Duan,F.K.,Du,Z.Y.,Ma,Y.L.,Tan,J.H.,Yang,F.M.,Liu,J.M., Zhang,X.L.,Weber,R.J.,Bergin,M.H.,Russell,A.G.,2011.Massabsorptionefficiency Acknowledgements ofelementalcarbonandwater-solubleorganiccarboninBeijing.China.Atmos. Chem.Phys.11:11497–11510.https://doi.org/10.5194/acp-11-11497-2011. Chow,J.C.,Watson,J.G.,Chen,L.W.A.,Chang,M.C.O.,Robinson,N.F.,Trimble,D.,Kohl,S., ThisstudywassupportedbytheNationalKeyResearchandDevel- 2007.TheIMPROVE-Atemperatureprotocolforthermal/opticalcarbonanalysis: opmentProgram(2016YFC0202204),theChineseAcademyofSciences maintainingconsistencywithalong-termdatabase.J.AirWasteManage.Assoc.57: 1014–1023.https://doi.org/10.3155/1047-3289.57.9.1014. (GrantNo.QYZDJ-SSW-DQC032),theNationalNaturalScienceFounda- Chow,J.C.,Watson,J.G.,Robles,J.,Wang,X.,Chen,L.W.A.,Trimble,D.L.,Kohl,S.D.,Tropp, tion of China (Grant No. 41530641/41571130031/41673116/ R.J.,Fung,K.K.,2011.Qualityassuranceandqualitycontrolforthermal/opticalanaly- 41603094),andtheGuangzhouScienceTechnologyandInnovation sisofaerosolsamplesfororganicandelementalcarbon.Anal.Bioanal.Chem.401: 3141–3152.https://doi.org/10.1007/s00216-011-5103-3. Commission(201607020002/201704020135). Chung,S.H.,Seinfeld,J.H.,2002.Globaldistributionandclimateforcingofcarbonaceous aerosols.J.Geophys.Res.Atmos.107:33.https://doi.org/10.1029/2001jd001397. References Chung,C.E.,Ramanathan,V.,Decremer,D.,2012.Observationallyconstrainedestimatesof carbonaceousaerosolradiativeforcing.P.Natl.Acad.Sci.USA109:11624–11629. Akimoto,H.,2003.Globalairqualityandpollution.Science302:1716–1719.https://doi. https://doi.org/10.1073/pnas.1203707109. org/10.1126/science.1092666. DeHaan,D.O.,Corrigan,A.L.,Tolbert,M.A.,Jimenez,J.L.,Wood,S.E.,Turley,J.J.,2009.Sec- Alexander,D.T.L.,Crozier,P.A.,Anderson,J.R.,2008.BrowncarbonspheresinEastAsian ondaryorganicaerosolformationbyself-reactionsofmethylglyoxalandglyoxalin outflowandtheiropticalproperties.Science321:833–836.https://doi.org/10.1126/ evaporatingdroplets.Environ.Sci.Technol.43:8184–8190.https://doi.org/10.1021/ science.1155296. es902152t. Andreae,M.O.,Gelencser,A.,2006.Blackcarbonorbrowncarbon?Thenatureoflight- DeHaan,D.O.,Hawkins,L.N.,Kononenko,J.A.,Turley,J.J.,Corrigan,A.L.,Tolbert,M.A., absorbingcarbonaceousaerosols.Atmos.Chem.Phys.6:3131–3148.https://doi.org/ Jimenez,J.L.,2011.Formationofnitrogen-containingoligomersbymethylglyoxal 10.5194/acp-6-3131-2006. andaminesinsimulatedevaporatingclouddroplets.Environ.Sci.Technol.45: Arnott,W.P.,Moosmuller,H.,Rogers,C.F.,Jin,T.F.,Bruch,R.,1999.Photoacousticspec- 984–991.https://doi.org/10.1021/es102933x. trometerformeasuringlightabsorptionbyaerosol:instrumentdescription.Atmos. Ding,Y.H.,Chan,J.C.L.,2005.TheEastAsiansummermonsoon:anoverview.Meteorog. Environ.33,2845–2852. Atmos.Phys.89:117–142.https://doi.org/10.1007/s00703-005-0125-z. Bahadur,R.,Praveen,P.S.,Xu,Y.Y.,Ramanathan,V.,2012.Solarabsorptionbyelemental Ding,X.,Wang,X.M.,Gao,B.,Fu,X.X.,He,Q.F.,Zhao,X.Y.,Yu,J.Z.,Zheng,M.,2012.Tracer- andbrowncarbondeterminedfromspectralobservations.P.Natl.Acad.Sci.USA basedestimationofsecondaryorganiccarboninthePearlRiverDelta,southChina. 109:17366–17371.https://doi.org/10.1073/pnas.1205910109. J.Geophys.Res.Atmos.117.https://doi.org/10.1029/2011jd016596. Bergstrom,R.W.,Russell,P.B.,Hignett,P.,2002.Wavelengthdependenceoftheabsorption Drozd,G.T.,McNeill,V.F.,2014.Organicmatrixeffectsontheformationoflight-absorbing ofblackcarbonparticles:predictionsandresultsfromtheTARFOXexperimentand compoundsfromalpha-dicarbonylsinaqueoussaltsolution.Environ.Sci.:Processes implicationsfortheaerosolsinglescatteringalbedo.J.Atmos.Sci.59,567–577 Impacts16:741–747.https://doi.org/10.1039/c3em00579h. http://dx.doi.org/10.1175/1520-0469(2002)059b0567:wdotaoN2.0.co;2. Du,Z.,He,K.,Cheng,Y.,Duan,F.,Ma,Y.,Liu,J.,Zhang,X.,Zheng,M.,Weber,R.,2014a.A Bergstrom,R.W.,Pilewskie,P.,Russell,P.B.,Redemann,J.,Bond,T.C.,Quinn,P.K.,Sierau,B., yearlongstudyofwater-solubleorganiccarboninBeijingI:sourcesanditsprimary 2007.Spectralabsorptionpropertiesofatmosphericaerosols.Atmos.Chem.Phys.7: vs. secondary nature. Atmos. Environ. 92:514–521. https://doi.org/10.1016/j. 5937–5943.https://doi.org/10.5194/acp-7-5937-2007. atmosenv.2014.04.060. 1368 S.Lietal./ScienceoftheTotalEnvironment633(2018)1360–1369 Du,Z.,He,K.,Cheng,Y.,Duan,F.,Ma,Y.,Liu,J.,Zhang,X.,Zheng,M.,Weber,R., Moosmuller,H.,Varma,R.,Arnott,W.P.,2005.Cavityring-downandcavity-enhancedde- 2014b.Ayearlongstudyofwater-solubleorganiccarboninBeijingII:lightab- tectiontechniquesforthemeasurementofaerosolextinction.AerosolSci.Technol. sorptionproperties.Atmos.Environ.89:235–241.https://doi.org/10.1016/j. 39:30–39.https://doi.org/10.1080/027868290903880. atmosenv.2014.02.022. Nguyen,T.B.,Lee,P.B.,Updyke,K.M.,Bones,D.L.,Laskin,J.,Laskin,A.,Nizkorodov,S.A., Favez,O.,Alfaro,S.C.,Sciare,J.,Cachier,H.,Abdelwahab,M.M.,2009.Ambientmeasure- 2012.Formationofnitrogen-andsulfur-containinglight-absorbingcompoundsac- mentsoflight-absorptionbyagriculturalwasteburningorganicaerosols.J.Aerosol celeratedbyevaporationofwaterfromsecondaryorganicaerosols.J.Geophys.Res. Sci.40:613–620.https://doi.org/10.1016/j.jaerosci.2009.04.002. Atmos.117.https://doi.org/10.1029/2011jd016944. Feng,Y.,Ramanathan,V.,Kotamarthi,V.R.,2013.Browncarbon:asignificantatmospheric Novakov,T.,Hegg,D.A.,Hobbs,P.V.,1997.Airbornemeasurementsofcarbonaceousaero- absorberofsolarradiation?Atmos.Chem.Phys.13:8607–8621.https://doi.org/ solsontheEastCoastoftheUnitedStates.J.Geophys.Res.Atmos.102:30023–30030. 10.5194/acp-13-8607-2013. https://doi.org/10.1029/97jd02793. Flowers,B.A.,Dubey,M.K.,Mazzoleni,C.,Stone,E.A.,Schauer,J.J.,Kim,S.W.,Yoon,S.C., Noziere,B.,Esteve,W.,2007.Light-absorbingaldolcondensationproductsinacidicaero- 2010.Optical-chemical-microphysicalrelationshipsandclosurestudiesformixed sols:spectra,kinetics,andcontributiontotheabsorptionindex.Atmos.Environ.41: carbonaceousaerosolsobservedatJejuIsland;3-laserphotoacousticspectrometer, 1150–1163.https://doi.org/10.1016/j.atmosenv.2006.10.001. particlesizing,andfilteranalysis.Atmos.Chem.Phys.10:10387–10398.https://doi. Noziere,B.,Dziedzic,P.,Cordova,A.,2007.Formationofsecondarylight-absorbing“fulvic- org/10.5194/acp-10-10387-2010. like”oligomers:acommonprocessinaqueousandionicatmosphericparticles? Formenti,P.,Elbert,W.,Maenhaut,W.,Haywood,J.,Osborne,S.,Andreae,M.O.,2003.In- Geophys.Res.Lett.34.https://doi.org/10.1029/2007gl031300. organicandcarbonaceousaerosolsduringthesouthernAfricanregionalscienceini- Petzold,A.,Schonlinner,M.,2004.Multi-angleabsorptionphotometry-anewmethodfor tiative(SAFARI2000)experiment:chemicalcharacteristics,physicalproperties,and themeasurementofaerosollightabsorptionandatmosphericblackcarbon.J.Aerosol emissiondataforsmokefromAfricanbiomassburning.J.Geophys.Res.Atmos. Sci.35:421–441.https://doi.org/10.1016/j.jaerosci.2003.09.005. 108.https://doi.org/10.1029/2002JD002408. Pöschl,U.,2005.Atmosphericaerosols:composition,transformation,climateandhealth Fu,X.,Guo,H.,Wang,X.,Ding,X.,He,Q.,Liu,T.,Zhang,Z.,2015.PM2.5acidityataback- effects. Angew. Chem. Int. Ed. 44:7520–7540. https://doi.org/10.1002/anie. groundsiteinthePearlRiverDeltaregioninfall-winterof2007-2012.J.Hazard. 200501122. Mater.286:484–492.https://doi.org/10.1016/j.jhazmat.2015.01.022. Powelson,M.H.,Espelien,B.M.,Hawkins,L.N.,Galloway,M.M.,DeHaan,D.O.,2014.Brown Fu,X.X.,Wang,X.M.,Hu,Q.H.,Li,G.H.,Ding,X.,Zhang,Y.L.,He,Q.F.,Liu,T.Y.,Zhang,Z.,Yu, carbonformationbyaqueous-phasecarbonylcompoundreactionswithaminesand Q.Q.,Shen,R.Q.,Bi,X.H.,2016.ChangesinvisibilitywithPM2.5compositionandrela- ammoniumsulfate.Environ.Sci.Technol.48:985–993.https://doi.org/10.1021/ tivehumidityatabackgroundsiteinthePearlRiverDeltaregion.J.Environ.Sci.40: es4038325. 10–19.https://doi.org/10.1016/j.jes.2015.12.001. Ramanathan,V.,Crutzen,P.J.,Kiehl,J.T.,Rosenfeld,D.,2001.Aerosols,climate,andthehy- Gao,B.,Yu,J.Z.,Li,S.X.,Ding,X.,He,Q.F.,Wang,X.M.,2011.Roadsideandrooftopmeasure- drologicalcycle.Science294:2119–2124.https://doi.org/10.1126/science.1064034. mentsofpolycyclicaromatichydrocarbonsinPM2.5inurbanGuangzhou:evaluation Ramanathan,V.,Li,F.,Ramana,M.V.,Praveen,P.S.,Kim,D.,Corrigan,C.E.,Nguyen,H., ofvehicularandregionalcombustionsourcecontributions.Atmos.Environ.45: Stone,E.A.,Schauer,J.J.,Carmichael,G.R.,2007.Atmosphericbrownclouds:hemi- 7184–7191.https://doi.org/10.1016/j.atmosenv.2011.09.005. sphericalandregionalvariationsinlong-rangetransport,absorption,andradiative Gustafsson,O.,Kruså,M.,Zencak,Z.,Sheesley,R.J.,Granat,L.,Engström,E.,Praveen,P.S., forcing.J.Geophys.Res.Atmos.112:365–371D22S21.https://doi.org/10.1029/ Rao,P.S.,Leck,C.,Rodhe,H.,2009.BrowncloudsoverSouthAsia:biomassorfossil 2006JD008124. fuelcombustion?Science323:495–498.https://doi.org/10.1126/science.1164857. Scherer,J.J.,Paul,J.B.,Okeefe,A.,Saykally,R.J.,1997.Cavityringdownlaserabsorption Hand,J.L.,Malm,W.C.,2007.Reviewofaerosolmassscatteringefficienciesfromground- spectroscopy:history,development,andapplicationtopulsedmolecularbeams. basedmeasurementssince1990.J.Geophys.Res.-Atmos.112(D18).https://doi.org/ Chem.Rev.97:25–51.https://doi.org/10.1021/cr930048d. 10.1029/2007JD008484. Seinfeld,J.H.,Pandis,S.N.,2006.AtmosphericChemistryandPhysical:FromAirPollution Hansen,A.D.A.,Rosen,H.,Novakov,T.,1984.Theaethalometer–aninstrumentforthe toClimateChange.JohnWiley&Sons,NewYork, pp.691–719. real-timemeasurementofoptical-absorptionbyaerosol-particals.Sci.TotalEnviron. Shah,J.J.,Watson,J.G.,Cooper,J.A.,Huntzicker,J.J.,1984.Aerosolchemical-composition 36:191–196.https://doi.org/10.1016/0048-9697(84)90265-1. andlight-scatteringinPortland,Oregon–theroleofcarbon.Atmos.Environ.18: He,M.,Zheng,J.Y.,Yin,S.S.,Zhang,Y.Y.,2011.Trends,temporalandspatialcharacteristics, 235–240.https://doi.org/10.1016/0004-6981(84)90249-X. anduncertaintiesinbiomassburningemissionsinthePearlRiverDelta,China. Shen,G.,Chen,Y.,Wei,S.,Fu,X.,Zhu,Y.,Tao,S.,2013.Massabsorptionefficiencyofele- Atmos.Environ.45:4051–4059.https://doi.org/10.1016/j.atmosenv.2011.04.016. mentalcarbonforsourcesamplesfromresidentialbiomassandcoalcombustions. Huang,X.,Yun,H.,Gong,Z.,Li,X.,He,L.,Zhang,Y.,Hu,M.,2014.Sourceapportionment Atmos.Environ.79:79–84.https://doi.org/10.1016/j.atmosenv.2013.05.082. andsecondaryorganicaerosolestimationofPM2.5inanurbanatmospherein Subramanian,M.,2014.Deadlydinners.Nature509:548–551.https://doi.org/10.1038/ China.Sci.ChinaEarthSci.57:1352–1362.https://doi.org/10.1007/s11430-013- 509548a. 4686-2. Tang,M.J.,Alexander,J.M.,Kwon,D.,Estillore,A.D.,Laskina,O.,Young,M.A.,Kleiber,P.D., IMPROVE(InteragencyMonitoringofProtectedVisualEnvironments)ReportV,2011. Grassian,V.H.,2016.Opticalandphysicochemicalpropertiesofbrowncarbonaero- Spatialandseasonalpatternsandtemporalvariabilityofhazeanditsconstituents sol:lightscattering,FTIRextinctionspectroscopy,andhygroscopicgrowth.J.Phys. intheUnitedStates.CooperativeInstituteforResearchintheAtmosphere.Colorado Chem.A120:4155–4166.https://doi.org/10.1021/acs.jpca.6b03425. StateUniversity,Colorado,USA. Trijonis,J.,1982.Existingandnaturalbackgroundlevelsofvisibilityandfineparticlesin Kirchstetter,T.W.,Novakov,T.,Hobbs,P.V.,2004.Evidencethatthespectraldependence theruralEast.Atmos.Environ.16:2431–2445.https://doi.org/10.1016/0004-6981 oflightabsorptionbyaerosolsisaffectedbyorganiccarbon.J.Geophys.Res.Atmos. (82)90133-0. 109:12.https://doi.org/10.1029/2004JD004999. Verma,R.L.,Sahu,L.K.,Kondo,Y.,Takegawa,N.,Han,S.,Jung,J.S.,Kim,Y.J.,Fan,S., Lack,D.A.,Langridge,J.M.,Bahreini,R.,Cappa,C.D.,Middlebrook,A.M.,Schwarz,J.P.,2012. Sugimoto,N.,Shammaa,M.H.,Zhang,Y.H.,Zhao,Y.,2010.Temporalvariationsof Browncarbonandinternalmixinginbiomassburningparticles.P.Natl.Acad.Sci. black carbon in Guangzhou, China, in summer 2006. Atmos. Chem. Phys. 10: USA109:14802–14807.https://doi.org/10.1073/pnas.1206575109. 6471–6485.https://doi.org/10.5194/acp-10-6471-2010. Laskin,A.,Laskin,J.,Nizkorodov,S.A.,2015.Chemistryofatmosphericbrowncarbon. Washenfelder,R.A.,Flores,J.M.,Brock,C.A.,Brown,S.S.,Rudich,Y.,2013.Broadbandmea- Chem.Rev.115:4335–4382.https://doi.org/10.1021/cr5006167. surementsofaerosolextinctionintheultravioletspectralregion.Atmos.Meas.Tech. Lee,A.K.Y.,Zhao,R.,Li,R.,Liggio,J.,Li,S.M.,Abbatt,J.P.D.,2013.Formationoflightabsorb- 6:861–877.https://doi.org/10.5194/amt-6-861-2013. ingorgano-nitrogenspeciesfromevaporationofdropletscontainingglyoxalandam- Washenfelder,R.A.,Attwood,A.R.,Brock,C.A.,Guo,H.,Xu,L.,Weber,R.J.,Ng,N.L.,Allen, moniumsulfate.Environ.Sci.Technol.47:12819–12826.https://doi.org/10.1021/ H.M.,Ayres,B.R.,Baumann,K.,Cohen,R.C.,Draper,D.C.,Duffey,K.C.,Edgerton,E., es402687w. Fry,J.L.,Hu,W.W.,Jimenez,J.L.,Palm,B.B.,Romer,P.,Stone,E.A.,Wooldridge,P.J., Liu,S.,Aiken,A.C.,Gorkowski,K.,Dubey,M.K.,Cappa,C.D.,Williams,L.R.,Herndon,S.C., Brown,S.S.,2015.Biomassburningdominatesbrowncarbonabsorptioninthe Massoli, P., Fortner, E.C., Chhabra, P.S., Brooks, W.A., Onasch, T.B., Jayne, J.T., ruralsoutheasternUnitedStates.Geophys.Res.Lett.42:653–664.https://doi.org/ Worsnop,D.R.,China,S.,Sharma,N.,Mazzoleni,C.,Xu,L.,Ng,N.L.,Liu,D.,Allan,J.D., 10.1002/2014gl062444. Lee,J.D.,Fleming,Z.L.,Mohr,C.,Zotter,P.,Szidat,S.,Prevot,A.S.H.,2015.Enhanced WorldBank,2015.EastAsia'schangingurbanlandscape:measuringadecadeofspatial lightabsorptionbymixedsourceblackandbrowncarbonparticlesinUKwinter. growth.UrbanDevelopmentSeries.WorldBankGroup,Washington,DC. Nat.Commun.6(10).https://doi.org/10.1038/ncomms9435. Xing,Z.Y.,Deng,J.J.,Mu,C.,Wang,Y.,Du,K.,2014.Seasonalvariationofmass Malm,W.C.,Sisler,J.F.,Huffman,D.,Eldred,R.A.,Cahill,T.A.,1994.Spatialandseasonal absorptionefficiencyofelementalcarboninthefourmajoremissionareas trends in particle concentration and optical extinction in the United States. in China. Aerosol Air Qual. Res. 14 1897-U1135. https://doi.org/10.4209/ J.Geophys.Res.Atmos.99:1347–1370.https://doi.org/10.1029/93jd02916. aaqr.2014.06.0121. Massabo,D.,Bernardoni,V.,Bove,M.C.,Brunengo,A.,Cuccia,E.,Piazzalunga,A.,Prati,P., Yang,M.,Howell,S.G.,Zhuang,J.,Huebert,B.J.,2009.Attributionofaerosollightabsorp- Valli,G.,Vecchi,R.,2013.Amulti-wavelengthopticalset-upforthecharacterization tiontoblackcarbon,browncarbon,anddustinChina-interpretationsofatmo- of carbonaceous particulate matter. J. Aerosol Sci. 60:34–46. https://doi.org/ spheric measurements during EAST-AIRE. Atmos. Chem. Phys. 9:2035–2050. 10.1016/j.jaerosci.2013.02.006. https://doi.org/10.5194/acp-9-2035-2009. Mohr,C.,Lopez-Hilfiker,F.D.,Zotter,P.,Prevot,A.S.H.,Xu,L.,Ng,N.L.,Herndon,S.C., Yu,Q.Q.,Gao,B.,Li,G.H.,Zhang,Y.L.,He,Q.F.,Deng,W.,Huang,Z.H.,Ding,X.,Hu,Q.H., Williams,L.R.,Franklin,J.P.,Zahniser,M.S.,Worsnop,D.R.,Knighton,W.B.,Aiken, Huang,Z.Z.,Wang,Y.J.,Bi,X.H.,Wang,X.M.,2016.AttributingriskburdenofPM2.5- A.C.,Gorkowski,K.J.,Dubey,M.K.,Allan,J.D.,Thornton,J.A.,2013.Contributionof boundpolycyclicaromatichydrocarbonstomajoremissionsources:casestudyin nitratedphenolstowoodburningbrowncarbonlightabsorptioninDetling,United Guangzhou,SouthChina.Atmos.Environ.142:313–323.https://doi.org/10.1016/j. Kingdomduringwintertime.Environ.Sci.Technol.47:6316–6324.https://doi.org/ atmosenv.2016.08.009. 10.1021/es400683v. Yuan,J.F.,Huang,X.F.,Cao,L.M.,Cui,J.,Zhu,Q.,Huang,C.N.,Lan,Z.J.,He,L.Y.,2016.Light Mok,J.,Krotkov,N.A.,Arola,A.,Torres,O.,Jethva,H.,Andrade,M.,Labow,G.,Eck,T.F.,Li,Z., absorptionofbrowncarbonaerosolinthePRDregionofChina.Atmos.Chem.Phys. Dickerson,R.R.,Stenchikov,G.L.,Osipov,S.,Ren,X.,2016.Impactsofbrowncarbon 16:1433–1443.https://doi.org/10.5194/acp-16-1433-2016. frombiomassburningonsurfaceUVandozonephotochemistryintheAmazon Zhang,Y.L.,Wang,X.M.,Blake,D.R.,Li,L.F.,Zhang,Z.,Wang,S.Y.,Guo,H.,Lee,F.S.C.,Gao,B., Basin.Sci.Rep.6.https://doi.org/10.1038/srep36940. Chan,L.Y.,Wu,D.,Rowland,F.S.,2012.Aromatichydrocarbonsasozoneprecursors S.Lietal./ScienceoftheTotalEnvironment633(2018)1360–1369 1369 beforeandafteroutbreakofthe2008financialcrisisinthePearlRiverDeltaregion, Zhong,M.,Jang,M.,2014.Dynamiclightabsorptionofbiomass-burningorganiccarbon southChina.J.Geophys.Res.Atmos.117:16.https://doi.org/10.1029/2011jd017356. photochemicallyagedundernaturalsunlight.Atmos.Chem.Phys.14:1517–1525. Zhang,Y.,Wang,X.,Barletta,B.,Simpson,I.J.,Blake,D.R.,Fu,X.,Zhang,Z.,He,Q.,Liu,T., https://doi.org/10.5194/acp-14-1517-2014. Zhao,X.,Ding,X.,2013.Sourceattributionsofhazardousaromatichydrocarbonsin urban,suburbanandruralareasinthePearlRiverDelta(PRD)region.J.Hazard. Mater.250:403–411.https://doi.org/10.1016/j.jhazmat2013.02.023.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.