DOCTORAL THESIS F A F IGHTING CCOUNTING RAUD T F A HROUGH ORENSIC NALYTICS Author: Supervisor: Maria JOFRE Prof. Richard GERLACH Dr. Marcel SCHARTH Athesissubmittedinfulfilmentoftherequirements forthedegreeofDoctorofPhilosophy inthe DisciplineofBusinessAnalytics BusinessSchool TheUniversityofSydney July2017 Declaration of Authorship I, Maria JOFRE, declare that this thesis, titled “Fighting Accounting Fraud Through Forensic Analytics” and the work presented in it are my own. This thesis has not been submitted for any degree or other qualification at this University or any other institution. I confirm that the intellectual content of this thesis is the product of my own work, that I have quoted all published work of others and that I have acknowledged all mainsourcesofhelp. MariaJofre i Veryfewofthecommonpeoplerealisethat thepoliticalandlegalsystems havebeencorruptedbydecades ofcorporatelobbying. StevenMagee ii Abstract Accounting Fraud is one of the most harmful financial crimes as it often results in massive corporate collapses, commonly silenced by powerful high-status executives and managers. Accounting fraud represents a significant threat to the financial system stability due to the resulting diminishing of the market confidence and trust of regulatory authorities. Its catastrophic consequences expose how vulnerable and unprotectedthecommunityisinregardstothismatter,sincemostdamageisinflicted toinvestors,employees,customersandgovernment. Accounting fraud is defined as the calculated misrepresentation of the financial statement information disclosed by a company in order to mislead stakeholders regarding the firm?s true financial position. Different fraudulent tricks can be used tocommitaccountingfraud,eitherdirectmanipulationoffinancialitemsorcreative methods of accounting, hence the need for non-static regulatory interventions that take into account different fraudulent patterns. Accordingly, this study aims to identifysignsofaccountingfraudoccurrencetobeusedto,first,identifycompanies that are more likely to be manipulating financial statement reports, and second, assistthetaskofexaminationwithintheriskierfirmsbyevaluatingrelevantfinancial red-flags,astoefficientlyrecogniseirregularaccountingmalpractices.Toachievethis, a thorough forensic data analytic approach is proposed that includes all pertinent stepsofadata-drivenmethodology. First, data collection and preparation is required to present pertinent information related to fraud offences and financial statements. The compiled sample of known fraudulent companies is identified considering all Accounting Series Releases and Accounting and Auditing Enforcement Releases issued by the U.S. Securities and Exchange Commission between 1990 and 2012, procedure that resulted in 1,594 fraud-year observations. Then, an in-depth financial ratio analysis is performed in order to evaluate publicly available financial statement data and to preserve iii only meaningful predictors of accounting fraud. In particular, two commonly used statistical approaches, including non-parametric hypothesis testing and correlation analysis, are proposed to assess significant differences between corrupted and genuine reports as well as to identify associations between the considered ratios. The selection of a smaller subset of explanatory variables is later reinforced by the implementationofacompletesubsetlogisticregressionmethodology. Finally,statisticalmodellingoffraudulentandnon-fraudulentinstancesisperformed by implementing several machine learning methods. Classical classifiers are considered first as benchmark frameworks, including logistic regression and discriminant analysis. More complex techniques are implemented next based on decision trees bagging and boosting, including bagged trees, AdaBoost and random forests. Ingeneral,itcanbesaidthataclearenhancementintheunderstandingofthefraud phenomenon is achieved by the implementation of financial ratio analysis, mainly due to the interesting exposure of distinctive characteristics of falsified reporting and the selection of meaningful ratios as predictors of accounting fraud, later validatedusingacombinationoflogisticregressionmodels. Interestingly,usingonly significantexplanatoryvariablesleadstosimilarresultsobtainedwhennoselectionis performed. Furthermore, better performance is accomplished in some cases, which strongly evidences the convenience of employing less but significant information whendetectingaccountingfraudoffences. Moreover,out-of-sampleresultssuggestthereisagreatpotentialindetectingfalsified accounting records through statistical modelling and analysis of publicly available accountinginformation. Ithasbeenshowngoodperformanceofclassicmodelsused as benchmark and better performance of more advanced methods, which supports the usefulness of machine learning models as they appropriately meet the criteria of accuracy, interpretability and cost-efficiency required for a successful detection methodology. This study contributes in the improvement of accounting fraud detection in several ways, including the collection of a comprehensive sample of fraud and non-fraudfirmsconcerningallfinancialindustries,anextensiveanalysisoffinancial information and significant differences between genuine and fraudulent reporting, selection of relevant predictors of accounting fraud, contingent analytical modelling iv for better differentiate between non-fraud and fraud cases, and identification of industry-specificindicatorsoffalsifiedrecords. The proposed methodology can be easily used by public auditors and regulatory agencies in order to assess the likelihood of accounting fraud and to be adopted in combinationwiththeexperienceandinstinctofexpertstoleadtobetterexamination ofaccountingreports. Inaddition,theproposedmethodologicalframeworkcouldbe of assistance to many other interested parties, such as investors, creditors, financial and economic analysts, the stock exchange, law firms and to the banking system, amongstothers. v Acknowledgements Firstofall,Iwouldliketothankmysupervisoryteamwhohaspatientlyguidedme duringthisfascinatingjourney. AbigthankyoutomymainsupervisorProf. Richard Gerlachandtomyco-supervisorDr. MarcelScharthfortheirconstantsupport. They bothhavecontributedsignificantlytomyresearchandprofessionalachievements. I wouldliketoextendmyacknowledgetoDr. DemetrisChristodoulouwhosupported me during the first years of the program and helped me with all administrative processes and other issues. I am also indebted to the thesis examiners who have made meaningful corrections and suggestions, which have improved the quality of theworkpresentedinthisdocument. Special thanks to Conicyt, institution responsible for providing financial support to Chilean students, as without the provided scholarship (Becas Chile) it would have beenverydifficulttoaffordmystudiesandlivingexpensesduringthis4-yearperiod. Inaddition,IwouldliketothanktheSecuritiesClassActionClearinghouse,Stanford Law School, for providing access to a very comprehensive database of accounting fraudcases. Most importantly, a huge thanks to my mom, dad and brother, who have given me unconditional love and support throughout my life. Especially grateful to my grandmother Maria Elizabeth, who lights candles for every little PhD-related event. Also, absolutely thankful to my late grandmother Alicia Berta de Jesus (R.I.P.), to whomIwouldlovetohugandsharealaugh,ormaybeatearortwo. Always grateful to all my friends who have had an influence on my life in some unique and magical way. I cannot express enough how eternally thankful I am to sharemylifewithsuchexceptionalbeings. vi Contents DeclarationofAuthorship i Abstract iii Acknowledgements vi 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 ResearchApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 ThesisOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 TheAccountingFraudPhenomenon 7 2.1 OverviewofWhite-CollarCrime . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 OverviewofCorporateCrime . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 OverviewofAccountingFraud . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 InfamousAccountingScandals . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 Victims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 ForensicAccounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 LiteratureReview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.8 ProposedMethodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 ForensicDataAnalysis 26 3.1 ForensicAnalytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 FraudDataCollection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 FinancialDataCollection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.1 BalanceSheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.2 IncomeStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 vii 3.3.3 CashFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 DataPreparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4.1 DataCleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4.2 DataTransformation . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4.3 DataMerging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4.4 DataValidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4.5 MissingValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5 SampleSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.6 ExploratoryDescriptiveAnalysis . . . . . . . . . . . . . . . . . . . . . . . 37 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 FinancialRatioAnalysis 42 4.1 FinancialRatios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 OutlierDetection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 RatioAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.4 RatioAnalysisbyIndustry . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.4.1 StandardIndustrialClassificationOverview . . . . . . . . . . . . 60 4.4.2 AnalysisbyIndustry . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.5 CorrelationAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.5.1 PearsonCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.5.2 KendallCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.6 VariableSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 CompleteSubsetLogisticRegression 73 5.1 TheoreticalBackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2 CompleteSubsetLogisticRegression . . . . . . . . . . . . . . . . . . . . . 75 5.3 ModellingAssessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6 AccountingFraudModelling 90 6.1 StatisticalModelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.2 MachineLearningMethods . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.2.1 DiscriminantAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.2.2 LogisticRegression . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 viii 6.2.3 AdaBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.2.4 DecisionTrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.2.5 BoostedTrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2.6 RandomForests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7 FinancialIndicatorsofAccountingFraud 111 7.1 MiningandConstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.2 Manufacturing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.3 Transportation,Communication,Electric,GasandSanitaryService . . . 113 7.4 WholesaleTradeandRetailTrade . . . . . . . . . . . . . . . . . . . . . . . 115 7.5 Finance,InsuranceandRealEstate . . . . . . . . . . . . . . . . . . . . . . 117 7.6 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.7 PublicAdministration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8 Conclusions,LimitationsandFutureWork 120 8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 8.3 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Bibliography 124 ix
Description: