ebook img

Field-Free Synthetic-Ferromagnet Spin Torque Oscillator PDF

0.35 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Field-Free Synthetic-Ferromagnet Spin Torque Oscillator

Field-Free Synthetic-Ferromagnet Spin Torque Oscillator Yan Zhou1, Jiang Xiao (萧江)2,3,∗ Gerrit E. W. Bauer4,5, and F. C. Zhang1,6 1Department of Physics, The University of Hong Kong, Hong Kong, China 2Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai, China 3Center for Spintronic Devices and Applications, Fudan University, Shanghai, China 4Institute for Materials Research, Tohoku University, Sendai, Japan 3 5Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands 1 6Center of Theoretical and Computational Physics, Univ. of Hong Kong, Hong Kong, China 0 (Dated: January 21, 2013) 2 We study the magnetization dynamics of spin valve structures with a free composite synthetic n ferromagnet(SyF)thatconsistsoftwoferromagneticlayerscoupledthroughanormalmetalspacer. a A ferromagnetically coupled SyF can be excited into dynamical precessional states by an applied J current without external magnetic fields. We analytically determine the stability of these states 8 in the space spanned by the current density and SyF interlayer exchange coupling. Numerical 1 simulations confirm our analytical results. ] l al The transfer of angular momentum between the mag- h netic layers of current-driven spin valves (spin-transfer ofaspinvalveorMTJ.33–39 SyFbasedspintronicdevices - torque) has not been so long ago predicted1,2 and ex- have the advantage of higher thermal stability, smaller s e perimentallyconfirmed.3,4Theimpliedefficientelectrical straymagneticfields,fasterswitchingspeedandreduced m control of magnetizations motivated the pursue of new threshold switching current as compared to single fer- research directions. When the current density exceeds romagnetic free layers.33–39 Klein et al.39 predicted that . at a critical value, the spin-transfer torque can switch the ananti-ferromagneticallycoupledSyFlayerwithuncom- m magnetization to a different static configurationwithout pensated magnetization can generate microwave oscilla- the necessity of applied magnetic fields, which makes it tions at zero applied magnetic field. - d attractive for next generation Magnetoresistive Random Here we predict that a ferromagnetically coupled SyF n Access Memory (MRAM) application.3,5–7 Under an ex- can also be driven into dynamical precessional states, o ternal magnetic field, the spin-transfer torque can also which, however, are surrounded in parameter space by c drive the magnetization into sustainable coherent oscil- static canted states with non-collinear magnetizations. [ lationsspanningawidefrequencyrangefromafewMHz We useananalyticalapproachtodetermine thestability 1 to several hundred GHz.3,5–11 High frequency magnetic regimesoftheSyFsystemandconfirmresultsbynumer- v oscillationsgenerateacoherentmicrowavevoltagesignal ical simulations. 4 9 throughthe GiantMagnetoresistance(GMR)inmetallic We study a spin torque nanodevice with synthetic fer- 2 spin valves or through the Tunneling Magnetoresistance romagnetic free layers as shown in Fig. 1. The left 4 (TMR)inmagnetictunneljunctions(MTJs). Thiseffect ferromagnetic film forms the fixed polarizer with mag- . can be used in so-called spin-torque oscillators (STO), netization m kˆz, and the SyF consists of two ferro- 1 0 0 which has many advantages including wide tunability,12 magnetic layers FM1 and FM2 of thickness d1,2 with a 3 veryhighmodulationrates,13,14compactdevicesize,and paramagnetic spacer. The unit vectors describing the 1 high compatibility with standard CMOS processes.15,16 magnetization orientation are m for FM and m for 1 1 2 : ThusSTOisappealingforhighfrequencymicrowaveap- FM . For simplicity, we assume that the SyF layers v 2 plications including microwaveemitters, modulatorsand i X detectors.17 However, the necessity of an applied mag- r netic field up to ∼1 Tesla has greatly limited the poten- a tialofthese STOs for microwavegenerationandwireless communication applications. Recently, various solutions have been proposed to enable zero-field operation, viz. STO with a perpendicularly magnetized fixed18 or spin valves with out-of-planemagnetized free layer,19,20 mag- netic vortex oscillators,21–26 wavy-torque STO by judi- cially choosing free and fixed layer materials with differ- ent spin diffusion lengths,27 and a tilted magnetization of the fixed layer with respect to the film plane.28–32 Recently, synthetic ferromagnets (SyFs) composed of FIG. 1. A spin valvestructure with an SyFfree layer, where two ferromagnetic layers separated by a very thin non- FM0 isthefixedlayerand FM1,2 layers are(anti-) ferromag- magnetic spacer have been used to replace the free layer netically coupled. 2 where α is the sum of the intrinsic Gilbert and the are made of the same materials with identical satura- spin pumping induced damping.44 The effective mag- tion magnetization Ms. The exchange coupling strength netic fields Hi consist of shape anisotropy and RKKY reads EC = −JSm1·m2, where J and S are the cou- exchange coupling and can be written as, pling energy per unit area and the cross section area of the sample, respectively. This corresponds to an effec- H = 2Ku [m ·e ]e + Jm¯i . (4) tive coupling field Hci = Jm¯i/(µ0Msdi), where i = 1,2 i µ0Ms i z z µ0Msdi and ¯i = 3 −i, µ is the vacuum magnetic susceptibil- 0 ity. m and m can be parallel or anti-parallel at zero For simplicity, we consider d1 =d2 =d (equal magne- 1 2 tization)for the restofthe paper unless otherwisespeci- applied field, corresponding to the non-local Ruderman- fied. We linearize Eq.(3) in the vicinity of four collinear Kittel-Kasuya-Yoshida(RKKY) exchange ferromagnetic equilibrium states, i.e. ↑↑,↑↓,↓↑,↓↓, and assume m = (J > 0) or antiferromagnetic (J < 0) coupling, respec- i λ ˆz+u with λ = ± and u denoting the small trans- tively. The spacer between FM and FM is presumed i i i i 0 1 verse magnetization component. After the linearization thick enough that the RKKY coupling with the fixed and the Fourier transform u (t) = u˜ (ω)e−iωtdω/2π, layer is negligibly small. Although the dynamic dipo- i i lar coupling may be responsible for the apparent reduc- Eq. (3) becomes R tionofstaticmagnetization40orlinewidthofthecurrent- u˜ isnmdaulcleerdfsoprinouwracvaesemcoodme4p1a,reitdistoestthiemsahteadpetoanbiseotmroupchy (cid:16)Aˆω+Vˆ(cid:17)(cid:18)u˜12 (cid:19)=0 (5) field and the other fields due to current-induced spin with torque and interlayer exchange coupling and therefore disregarded39. Aˆ= 1−iαλ1 iβλ2 , (6a) Let P0,1 be the spin currentpolarizationby m0,1 such (cid:18) iβλ1 1−iαλ2(cid:19) tahnadtPth1je swpiitnhcjurtrheenteldeecntrsiictycuinrrtehnet tdwenossitpya.ceTrshearceorPr0ej- Vˆ =ω0(cid:18)λ01 λ02(cid:19)+ωJ(cid:18)−λλ22 −λλ11(cid:19) sponding spin-transfer torques on m and m are given 1 2 −λ 0 λ λ −1 by the projections: +iω P 1 +P 1 2 , (6b) j(cid:20) 0(cid:18) 0 0(cid:19) 1(cid:18) 1 −λ1λ2(cid:19)(cid:21) γ~j NST1 = m1×(P0m0−P1m2)×m1, (1a) with ω0 = 2γKu/µ0Ms, ωJ = γJ/µ0Msd, ωj = 2eµ0Msd1 (~/2e)(γj/µ M d). The frequency of the normal modes NST2 = γ~j P1m2×m1×m2, (1b) are given by0thse eigenvalues of Wˆ = −Aˆ−1Vˆ : Ω1 and 2eµ0Msd2 Ω2. When any of the Im Ω1,2 > 0, the system is unsta- ble, implying that aninfinitesimalperturbationwill lead withγ the gyromagneticratioandP (P )areingeneral 0 1 tomagnetizationdynamicswithamplitudesthatinitially functions of the angle θ =∠(m ,m ) (∠(m ,m )).1,42 0 1 1 2 increase exponentially in time. Spinpumpingcausesenhanceddampinginaferromag- Theaboveresultsallowustocalculatethestabilityre- netic layer by emitting spin current into the adjacent gions for the ↑↑,↑↓,↓↑,↓↓ phases in the space of typical non-magnetic layers.43 This emitted spin pumping cur- experimental parameters: angle-independent P = P = 1 2 rentcanexertatorqueonthesecondlayer. Disregarding P = 0.5, d = 3 nm, K = 8×104 J/m3, j∼108 A/cm2 u the backflowanddiffusioninthe spacerlayer,thetorque and J∼1 mJ/m2.39,47 To analytically construct the sta- density acting on mi due to spin pumping from m¯i can bilitydiagramasshowninthetop-leftpanelofFig.2(a), be written as we first calculate the eigenvalues for each given set of [j,J] as given by Eq. (5). Then we determine whether NSPi =βm¯i×m˙¯i−[(βm¯i×m˙¯i)·mi]mi (2) any of the four collinear static states (different combi- nations of [λ ,λ ]) is stable or not. For example, both 1 2 where β is the effective enhanced damping due to spin the imaginarypartofthe eigenvaluesof↑↑ configuration pumping. It has been shown that Eq. (2) gives rise to a [λ = +1,λ = +1] are negative when j.0. Therefore 1 2 dynamic exchange interaction that can induce synchro- ↑↑ is stable in the blue region. In this way, we quickly nizationofthe magnetizationdynamics intwo neighbor- map the parameter space for any given set of [j,J] and ing ferromagnetic layers even for wide spacers.44 In the construct the entire stability diagram consisting of four results below we fully include the spin pumping. How- collinear magnetization configurations. The spin torque ever, in contrast to multilayers excited by microwaves,44 drives the SyF to the parallel ↑↑ configuration for nega- weobservehereonlysmallcorrectionsdemonstratingthe tive currents j. For positive currents, the ↓↑ configura- dominance of charge current-induced torques. tion is preferred. These results can be understood from The dynamics is described by the coupled Landau- Eq. (1). In a small regionthe antiparallel ↑↓ state exists Lifshitz-Gilbert-Slonczewski (LLGS) equations,45,46 fornegativeJ andsmallj (i.e. inthevicinityoftheneg- ativeverticalaxisbut notvisible in the figuredue to the m˙ =−γm ×H +αm ×m˙ −N −N , (3) scale). Although it seems that the ↓↓ state also occupies i i i i i SPi STi 3 (a) 5 (b) 15 STO canted STO canted a.u. ) 5 10-1 2 m J/ 6 Hz) 10 -20 m0 (Gf 5 10-2 1 (J 1 2 3 4 0 10-3 1 2 3 4 5 1 2 3 4 5 -5 0 5 -5 0 5 j (108 A/cm2) j (108 A/cm2) j (107 A/cm2) j (107 A/cm2) (c) 1 (cid:127)(cid:127) 1 (1) 1 (2) 1 (3) FmI1G·m. 32.((rCigohlto)raosnalifnuen)cPtioowneorfscpuercretrnutmdefnosritmyj0·amnd1 f(rleeqftu)eanncdy 2 f at J =0.25 mJ/m2, corresponding to the black line in the (cid:127)/(cid:127) top right panel of Fig. 2. 0 5 10 0 20 40 0 5 10 1 (4) 1 (5) 1 (6) (cid:127)/(cid:127) z m1 y x panlidngm. WiensuFmigm. a2r(ibz)e, tihnewdhynicahmwices ocofntfihremcotuhpelepdhmas1e 2 m 2 boundaries in the analytical analysis in Fig. 2(a). In 0 5 10 0 20 40 0 20 40 addition, we can now map the STO phase by the pur- t (ns) t (ns) t (ns) ple color. The rest of the white region consists of static canted states. In Fig. 2(c) we show the six different SyF FIG. 2. (Color online) Dynamical phase diagram in the pa- configurations that may exist depending on the current rameterspaceofcurrentsandRKKYcouplingstrengths. (a) andRKKYcouplingstrength. Point5correspondstoan PhasediagramcalculatedanalyticallybyEq.(5);noneofthe STO state, in which both m are undergoing large an- four states ↑↑,↑↓,↓↑,↓↓ is stable in the white region. (b) 1,2 gleprecessions,whichresultinalargemagnetoresistance Phase diagram calculated by numerically solving the LLGS oscillations attractive for applications. Eq. (3). The purple are the STO phase, and the white one the canted state. (c) The time evolution of the polar angles For the STO phase, we study the power spectrum θ1,2 = ∠(m1,2,zˆ) at the six different points indicated in the of the magnetoresistance due to the magnetization os- phase diagram. In the third subfigure of (c), the solid and cillation of m , which is approximated by R(t) = 1,2 dashed lines correspond to different sets of initial conditions. R +∆R m ·m +∆R m ·m . Fig.3showstheFourier 0 1 0 1 2 1 2 transform of m ·m (left) and m ·m (right) as a func- 0 1 1 2 tionofcurrentdensityj atJ =0.25mJ/m2(correspond- ingtothe blacklineinFig.2(b)). Theclearhigherorder thefourthquadrant(j >0,J <0),thistriangularregion harmonicmodesareevidenceofthenon-linearitiesinthe is hysteretic, i.e. ↓↓ and ↓↑ may both appear depending STO dynamics. Fig. 3 also demonstrate that the oscil- on the history. lationfrequency of the device canbe continuously tuned Most importantly, there is a white/purple region in by the current at zero applied magnetic field and thus which none of the four static collinear states is stable, potentially be utilized for nano-scale microwaveapplica- therefore it must be either in a dynamical STO or static tions. Itshouldbenotedthatthefrequencyrangecanbe cantedstate. Toleadingorderofα,wefindfromEq.(5) furthertuned bytens ofGHz byadoptinga largerKu or an approximate boundary for the white region: taking into account the easy-plane anisotropy field (de- magnetization field). upper: ωJ =ωj, (7a) The STO phase studied in this work differs from that ω2 studied by Klein et al. [39]. The STO phase found lower: ω = 4ω2+ω2−2ω +α 0, (7b) J q 0 j 0 ωj by Klein et al. arises only in an anti-ferromagnetically (J < 0) coupled uncompensated SyF (M = M d S < 1 s 1 which is plotted as the black dashed lines in Fig. 2(a,b), M d S = M ), in which the total magnetization for the s 2 2 matchingthenumericallyobtainedboundariesalmostex- SyF is opposite to that of m . However, the STO phase 0 actly. Eq. (7) is calculated from the eigenvalue anal- foundin ourstudy appearsinthe ferromagneticallycou- ysis based on Eq. (5) with perturbation from the four pledSyFwith J >0 anddoesnotrequireM 6=M . Fur- 1 2 static collinear states. This method is equivalent to that thermore,wewerenotabletoreproducedtheSTOphase usedbyBazaliyetal.48 Afullyanalyticalsolutionforthe foundbyKleinet al. foranuncompensatedandantipar- boundary between STO and static canted phase turned allelSyF.Wecheckedtheeffectofanangulardependence out to be intractable. due to the complexity of Eq. (5) ofthe prefactorP that take into accountthe effects of a i for non-collinear states. spinaccumulation42. Theboundariesofthewhiteregion We now present numerical solutions of the LLGS will shift noticeably, but we find no qualitative changes. Eq. (3) including damping, spin torque and RKKY cou- ThedifferenceswithRef. 39mightbeduetootherdetails 4 states display large angle precession, therefore generat- ing a largepoweroutput. In additionto dynamicalSTO in handling spin transport. states, static canted states are also possible in the same structure at slightly different applied current densities. Finally, we note that our approach can be readily ex- Our findings may guide the experimental effort towards tended frombi-layerto multilayersystems inwhicheach the field-free STO for real applications. layer is exchange-coupled with its neighbouring layers We acknowledge support from University Research (unpublished). This may provide a novel route to ef- Committee (Project No. 106053) of HKU, the Univer- fectively synchronize a large network of spin torque os- sity Grant Council (AoE/P-04/08) of the government cillators. of HKSAR, the National Natural Science Foundation of In conclusion, we predict that the ferromagnetically China (No. 11004036,No. 91121002),the FOM founda- coupled SyF can be driven into STO states without the tion, DFG Priority Program SpinCat, and EG-STREP need of applying magnetic fields. The resulting STO MACALO. ∗ Corresponding author: [email protected] Sol.-RRL 5, 432 (2011). 1 J.C.Slonczewski,J.Magn.Magn.Mater.159,L1(1996). 21 V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, P. M. Bra- 2 L. Berger, Phys. Rev.B 54, 9353 (1996). ganca, O. Ozatay, J. C. Sankey, D. C. Ralph, and R. A. 3 J. Z.Sun,J. Magn. Magn. Mater. 202, 157 (1999). Buhrman, Nat. Phys.3, 498 (2007). 4 J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, 22 V. S. Pribiag, G. Finocchio, B. J. Williams, D. C. Ralph, and D.C. Ralph,Phys. Rev.Lett. 84, 3149 (2000). and R. A.Buhrman, Phys. Rev.B 80, 180411 (2009). 5 T. J. Silva and W. H. Rippard, J. Magn. Magn. Mater. 23 G. Finocchio, V. S. Pribiag, L. Torres, R. A. Buhrman, 320, 1260 (2008). and B. Azzerboni, Appl.Phys. Lett.96, 102508 (2010). 6 J. A. Katine and E. E. Fullerton, J. Magn. Magn. Mater. 24 N. Locatelli, V. V. Naletov, J. Grollier, G. de Loubens, 320, 1217 (2008). V. Cros, C. Deranlot, C. Ulysse, G. Faini, O. Klein, and 7 J. Z. Sun and D. C. Ralph, J. Magn. Magn. Mater. 320, A. Fert,Appl.Phys. Lett. 98, 062501 (2011). 1227 (2008). 25 A. Dussaux, B. Georges, J. Grollier, V. Cros, A. V. 8 M. A. Hoefer, M. J. Ablowitz, B. Ilan, M. R. Pufall, and Khvalkovskiy, A. Fukushima, M. Konoto, H. Kubota, T. J. Silva, Phys.Rev. Lett.95, 267206 (2005). K. Yakushiji,S. Yuasa, et al., Nat.Comm. 1, 8 (2010). 9 S. I. Kiselev, J. C. Sankey,I. N. Krivorotov, N. C. Emley, 26 A. Dussaux, A. V. Khvalkovskiy, J. Grollier, V. Cros, R.J.Schoelkopf,R.A.Buhrman,andD.C.Ralph,Nature A. Fukushima, M. Konoto, H. Kubota, K. Yakushiji, 425, 380 (2003). S. Yuasa, K. Ando, et al., Appl. Phys. Lett. 98, 132506 10 M.Tsoi,A.G.M.Jansen,J.Bass,W.C.Chiang,M.Seck, (2011). V. Tsoi, and P. Wyder, Physical Review Letters 80, 4281 27 O.Boulle, V.Cros,J.Grollier, L.G.Pereira,C.Deranlot, (1998). F. Petroff, G. Faini, J. Barnas, and A. Fert,Nat.Phys. 3, 11 M.Tsoi,A.G.M.Jansen,J.Bass,W.C.Chiang,V.Tsoi, 492 (2007). and P.Wyder, Nature406, 46 (2000). 28 Y. Zhou, C. L. Zha, S. Bonetti, J. Persson, and J. Aker- 12 S.Bonetti,P.Muduli,F.Mancoff,andJ. Akerman,Appl. man, J. Appl. Phys.105, 07D116 (2009). Phys. Lett. 94, 102507 (2009). 29 Y. Zhou, J. Persson, S. Bonetti, and J. Akerman, Appl. 13 M. R. Pufall, W. H. Rippard, S. Kaka, T. J. Silva, and Phys. Lett.92, 092505 (2008). S. E. Russek,Appl. Phys.Lett. 86, 082506 (2005). 30 Y. Zhou, S. Bonetti, C. L. Zha, and J. Akerman, N. J. 14 P.K.Muduli,Y.Pogoryelov,F.Mancoff,andJ.Akerman, Phys. 11, 103028 (2009). IEEE Tran. Magn. 47, 1575 (2011). 31 R.-X.Wang,P.-B.He,Z.-D.Li,A.-L.Pan,andQ.-H.Liu, 15 J. Akerman,Science 308, 508 (2005). J. Appl. Phys.109, 033905 (2011). 16 B.N.Engel,J.Akerman,B.Butcher,R.W.Dave,M.De- 32 P.-B.He,R.-X.Wang,Z.-D.Li,W.-M.Liu,A.-L.Pan,Y.- Herrera, M. Durlam, G. Grynkewich, J. Janesky, S. V. G. Wang, and B.-S. Zou, Eur. Phys. J. B 73, 417 (2010). Pietambaram, N.D.Rizzo, et al., IEEETrans. Magn. 41, 33 T.TaniguchiandH.Imamura,AppliedPhysicsExpress4, 132 (2005). 103001 (2011). 17 P. K. Muduli, Y. Pogoryelov, Y. Zhou, F. Mancoff, and 34 S. Yakata, H. Kubota, T. Sugano, T. Seki, K. Yakushiji, J. Akerman,Integrated Ferroelectrics 125, 147 (2011). A. Fukushima, S. Yuasa, and K. Ando, Appl. Phys. Lett. 18 D. Houssameddine, U. Ebels, B. Delaet, B. Rodmacq, 95, 242504 (2009). I. Firastrau, F. Ponthenier, M. Brunet, C. Thirion, J.- 35 I. Yulaev, M. V. Lubarda, S. Mangin, V. Lomakin, and P. Michel, L. Prejbeanu-Buda, et al., Nat. Mater. 6, 447 E.E.Fullerton,AppliedPhysicsLetters99,132502(2011). (2007). 36 M. Ichimura,T. Hamada, H. Imamura, S. Takahashi, and 19 W. H. Rippard, A. M. Deac, M. R. Pufall, J. M. Shaw, S. Maekawa, Journal of Applied Physics 109, 07C906 M. W. Keller, S. E. Russek, G. E. W. Bauer, and C. Ser- (2011). pico, Phys.Rev.B 81, 014426 (2010). 37 P. Balaz and J. Barnas, Phys.Rev. B 83, 104422 (2011). 20 S. M. Mohseni, S. R. Sani, J. Persson, T. N. A. Nguyen, 38 A. Bergman, B. Skubic, J. Hellsvik, L. Nordstrom, S. Chung, Y. Pogoryelov, and J. Akerman, Phys. Stat. A.Delin,andO.Eriksson,Phys.Rev.B83,224429(2011). 5 43 Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev.Lett. 88, 117601 (2002). 39 C. Klein, C. Petitjean, and X. Waintal, Phys. Rev. Lett. 44 Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. 108, 086601 (2012). Halperin, Reviews of Modern Physics 77, 1375 (2005). 40 O. Dmytriiev, T. Meitzler, E. Bankowski, A. Slavin, and 45 J. Z. Sun,Phys. Rev.B 62, 570 (2000). V. Tiberkevich, Journal of Physics-condensed Matter 22, 46 J. Xiao, A. Zangwill, and M. D. Stiles, Phys. Rev. B 72, 136001 (2010). 014446 (2005). 41 D.Gusakova,M.Quinsat,J.F.Sierra,U.Ebels,B.Dieny, 47 S. Yakata, H. Kubota, T. Seki, K. Yakushiji, L.D.Buda-Prejbeanu,M..C.Cyrille,V.Tiberkevich,and A. Fukushima, S. Yuasa, and K. Ando, IEEE T. A. N.Slavin, Applied Physics Letters 99, 052501 (2011). Magn. 46, 2232 (2010). 42 J. Xiao, A. Zangwill, and M. D. Stiles, Phys. Rev. B 70, 48 Y.B.Bazaliy,B.A.Jones,andS.C.Zhang,Phys.Rev.B 172405 (2004). 69, 094421 (2004).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.