ebook img

Field calibration of cup anemometers PDF

44 Pages·2017·1.68 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Field calibration of cup anemometers

Downloaded from orbit.dtu.dk on: Jan 21, 2023 Field calibration of cup anemometers Kristensen, L.; Jensen, G.; Hansen, A.; Kirkegaard, P. Publication date: 2001 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Kristensen, L., Jensen, G., Hansen, A., & Kirkegaard, P. (2001). Field calibration of cup anemometers. Denmark. Forskningscenter Risoe. Risoe-R No. 1218(EN) General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.  Users may download and print one copy of any publication from the public portal for the purpose of private study or research.  You may not further distribute the material or use it for any profit-making activity or commercial gain  You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Risø–R–1218(EN) Field Calibration of Cup Anemome- ters Leif Kristensen, Gunnar Jensen, Arent Hansen, and Peter Kirkegaard Risø National Laboratory, Roskilde, Denmark January 2001 (cid:0) Abstract Anoutdoorcalibrationfacilityforcupanemometers,wherethesignalsfrom 10 anemometers of which at least one is a reference can be can be recorded simulta- neously, has been established. The results are discussed with special emphasis on the statisticalsignificanceofthecalibrationexpressions.Itisconcludedthatthemethodhas the advantage that manyanemometers can be calibrated accurately with a minimum of workandcost.Theobviousdisadvantageisthatthecalibrationofasetofanemometers maytakemorethanonemonthinordertohavewindspeedscoveringasufficientlylarge magnituderangeinawinddirectionsectorwherewecanbesurethattheinstrumentsare exposedtoidentical, simultaneouswindflows. Anothermainconclusion isthat statisti- cal uncertainty must be carefully evaluated since the individual 10 minute wind-speed averagesarenotstatisticallyindependent. ISBN87–550–2772–5;ISBN87–550–2773–3(Internet) ISSN0106–2840 Print:DankaServicesInternationalA/S,2001 Contents 1 Introduction 5 2 CalibrationSetup 6 3 StatisticalConsiderations 6 3.1 GainandOffsetbyOrthogonalFitting 8 3.2 StatisticalUncertainties 11 4 DataAnalysis 20 5 Conclusion 24 Appendices 28 A RegressionwithCurvature 28 B MonteCarloSimulations 29 C DiscreteSampling 32 D IntermittentSampling 34 Acknowledgements 40 References 41 Risø–R–1218(EN) 3 1 Introduction Themostaccurateinstrumentformeasuringthemean-windspeedhasso-farbeenthecup anemometer.Itwasinventedin1846bytheIrishastronomerT.R.Robinson(Middleton 1969, Wyngaard 1981) and the original instruments had four cups. Until the end of the 1920s much research went into experimenting with the number of cups and the arm lengths. Brazier (1914) and Patterson (1926) found that shorter arms improvedthe lin- earity of the calibration and that a three-arm cup rotor is optimal with respect to sen- sitivity and suppression of the unevenness in the rotation (“wobbling”). A modern cup anemometerisshowninFig.1. Figure1.TheRisøanemometer.Thediameteroftheconicalcupsinthethree-cupplast rotor is 7 cm. The body is made of anodized aluminum. The height of the instrument from thebottom tothecenter oftherotor is24.7cm. Theoutputsignal, generatedby a magneticallyactivatedswitch,isatrainofelectricpulses,twoforeachrotorrevolution. By counting pulses over a certain period one obtains a number corresponding to the mean-windspeedforthisperiod. Thecupanemometernowappearstobethepreferredinstrumentformeasuringthemean- windspeedinthewind-energycommunity,mainlybecauseofthelinearity,theaccuracy andthestabilityofthecalibration.Butalsothefactthatthisinstrumentisomnidirectional and easy to mount makes it attractive for routine measurements. There has been some discussionabouttheimportanceoftheso-called“overspeeding”whichiscausedbythe asymmetric response to instantaneous increases and decreases in the wind speed and which,incidentally,isanecessarypropertyforthecupanemometertostartrotatingwhen exposed to a wind, i.e. to function at all (Kristensen 1998). Some of those who believe thatoverspeedingisa problem havepreferred touse a propeller-vaneinstrumentwhich isconsideredsymmetricinitsresponsetooppositewinddirections.Theproblemishere thatthepropellersignaldependsontheinstantaneousanglebetweenthewinddirection andthepropelleraxis.Thevaneoftheinstrument,whichtriestoaligntheaxiswiththe winddirection,willalwayslagbehind.Theresultisthattherewillalwaysbeasystematic errorofthemeasuredmeanwind.Thiserrorisingeneralexacerbatedbythefactthatthe propellerwillperformitsownmotionsinceitisseldommounteddirectlyoverthevertical axis of the vane (Kristensen 1994). Also, on basis of the studies by Kristensen (1998), Kristensen(1999),andKristensen(2000)theadverseeffectsoftheasymmetricresponse of the cup anemometer seem exaggerated. Thusthe choice to use cup anemometers for routinemeasurementsisasoundone. Inthefollowingwediscussanoutdoorcalibrationsetupforanumberofcupanemome- ters whichare simultaneouslyexposedtothe samewind. Inprinciplewecanletone of Risø–R–1218(EN) 5 (cid:1) theanemometersbe“thestandard”andthenintercalibratebycomparingtheoutputsig- nals.Thisstandardanemometerisassumed tohavebeen calibratedina“certified” way accordingtoanapproved,well-described methodbymeansofagoodwindtunnel with littleturbulenceandaflatprofile.Itcouldbearguedthatananemometermountedoutdoor isexposedtowindflowswhichchangesinstantaneouslyinbothwindsp(cid:2)eedandwinddi- rectionwhereastheflowinawindtunnelisalwaysinthesamedirection.However,since the cup anemometer allegedly measures the instantaneous component we really com- pare mean signals from these outdoor anemometers through which the same “length of air” haspassed, just aswe would havedonewhen using a windtunnel. Theonly reser- vationone can haveis that the non-ideal angular response to verticalwind components mayproduceabiasduetothefluctuatingverticalwindcomponent,but,asdemonstrated byKristensen (1994),this can relativelyeasily bequantified if necessary.Here itis not consideredaseriousproblem. First we describe the calibration site. Then we discuss the statistical data analysis and, finally,weillustratethemethodbyanalyzingrealdatafromthecalibrationinstallation. 2 Calibration Setup The calibration setup is located behind the beach at the southwestern part of the Risø peninsula, just north of the pier, as Fig. 2 shows. The dis(cid:3)tance(cid:3)to the water line is ap- proximately12mandth(cid:3) eorientationofthecalibrationboomwherethetenanemometers aremountedabout10moverthesurroundingterrainis19 –199 .Thismea(cid:4)nsth(cid:3) atwind from(cid:3) the direction 289 will have travelled over a water fetch of about 7 km before it simultaneouslyreachesalltheanemometer.Acceptingadirectionsectorof 45 around 289 ,thewaterfetchwillbeatleast3km.Inotherwords,thesitehasbeenchosentobe well-exposedforwindsfromthepredominantwinddirectioninDenmark. The calibration boom is mounted on the top of two steel lattice masts with triangular crosssectionswiththesidelength0.25m.Fig.3showsasketchandaphotographofthe measuringsetup. ThedatarecordingiscarriedoutwithanAanderaadataloggerwith12ten-bitchannels. Numberingthesefrom1to12,channel1isthetemperaturechannelandchannel12the directionchannel.Channelsfrom2to11areusedfortheanemometeroutputs.Toprevent (cid:5) the signal from the Risø anemometer with two counts per revolution from causing the 10-bit channels to overflow during the counting period of 10 minutes, the numbers in the registers are scaled down by the factor 25 32. Usually we have two positions for reference anemometers. The rest of the positions are test positions. Table 1 gives the “names”ofthetenpositions. Thiscalibrationconfiguration,whereuninterrupted,consecutive10-minuteaverageshave beenmeasured,hasbeenoperatingsince1996. 3 Statistical Considerations (cid:6) Thecalibrationprocedureimpliesthatwecomparetwoalmostidenticalresponsestothe same signal. For symmetry reasons we adopt a method where the mean square of the Actually,averagedoveronefullrotorrotation. 6 Risø–R–1218(EN) Figure2.MapoftheRi(cid:3)søpeninsula.Thecalibrationsiteisshowninalittlemoredetailin thecircularblow-up.Thedirectionperpendiculartothecalibrationboom,whichparallel tothecoastline,is289 .Whenthewindisfromthisdirectionthemutualflowdisturbance betweentheanemometersisatminimum. (cid:3) (cid:3) Figure3.CalibrationsetupatRisø,intheleftframedrawntothescale1:190.Theori- entation of the boom with the ten cup anemometersis 19(cid:3) –199 . The lower boom is a serviceboom usedfor mounting theinstruments. Thewind direction ismeasuredat the end of a1.8 m long boom,pointing inthe direction 319 . Thethermometer ismounted onaboomat2movertheground.Thetwosupportingmastsaretriangularlatticemasts withthesidelength25cm. Risø–R–1218(EN) 7 Table1.Positionnamesandchannelnumbers.Thenorthernmostandsouthernmostposi- tionsare“TestA1”and“TestA2”,respectively. Position Channel TestA1 11 TestB1 10 Ref.1 9 TestC1 8 TestD1 7 TestD2 6 TestC2 5 Ref.2 4 TestB2 3 TestA2 2 perpendiculardistanceofthepointstotheregressionlineisminimized.Subsequentlywe discussthestatisticalimplicationsoftheadoptedmethod. 3.1 Gain and Offs(cid:7) et by Orthogon(cid:8)al(cid:9) F(cid:10)(cid:11)(cid:9)ittin(cid:5) g(cid:12)(cid:13)(cid:12)(cid:13)(cid:12) Wewanttofitastraightline toanumberofpoints x y i 1 N. i i (cid:5) Theequation(cid:14)forthelineis y ax b (1) (cid:5) or,invectorf(cid:14)orm,(cid:9)(cid:16)(cid:15) (cid:17) (cid:17) r r q t ¥ q ¥ (2) 0 (cid:8) (cid:9) (cid:10) wherer isapointonthelineandt aunitvectorinthedirectionoftheline. 0 The two signals x y are both representing wind velocities from the same type of i i anemometer.Nowweminimizethemeansquaredsumf oftheperpendiculardistances difromt(cid:5)hepointsto(cid:12) theline,viz. (cid:18) f 1 (cid:229)N d2 (3) N i (cid:8) (cid:9) (cid:10) (cid:7) i 1 Wemustthereforefirstdeterminethedistanced fromapoint x y totheline . i i i (cid:5) Intermsofthe(cid:14)unitv(cid:12)ectorsiand jdescribingtheCartesiancoordinatesystemwehave r x i y j (cid:7) (4) 0 0 0 (cid:5) Theunitvectort alon(cid:14)g andtheorthogonalunitvectornaregivenby t cosa i sina j (5) 8 Risø–R–1218(EN) (cid:19) (cid:5) and (cid:15) (cid:14) (cid:9) n sina i cosa j (cid:7) (6) wherea istheanglefromthex-axisto . (cid:5) Thesigneddis(cid:14)tanced fromagivenpoint i r (cid:7)xi y j (7) i i i (cid:5)(cid:21)(cid:20) (cid:5) totheline is(cid:15) (cid:22)(cid:24)(cid:23) (cid:15) (cid:8) (cid:15) (cid:10) (cid:14)(cid:25)(cid:8) (cid:15) (cid:10) (cid:12) d r r n x x sina y y cosa (8) i i 0 i 0 i 0 (cid:27) ThedefinitionsofthequantitiesweuseareillustratedinFig.4. 7 #" ; $ " &(cid:21)’)(+*-,/.103254 (cid:31) 9 (cid:29) (cid:25)! (cid:30) 7 8 : % 6 6 (cid:26) (cid:28) (cid:5) Figure 4.Illustration of the calculation of the distance d of one point to the regression i linewithoffsetbandslopea tana . Equation(cid:5) (3)nowbecomes (cid:15) (cid:8) (cid:15) (cid:10) (cid:14)(cid:25)(cid:8) (cid:15) (cid:10) = (cid:12) (cid:18) < f 1 (cid:229)N x x sina y y cosa 2 (9) N i 0 i 0 i 1 We want to dete>rmi?ne the values of r and a that minimize f . In fact, there are only 0 twoindependentparametersofwhichtheanglea mustbeone.Sinceweexpecta tobe diff(cid:5)erentfromn p 2,wecanfixeitherofx ory andusetheotherasafittingparameter. 0 0 Letusfixx .Inprinciple,thereisnoboundsonitsvalue,butitseemspracticaltochoose 0 x xwheretheaveragesymbolstandsfortheoperation 0 (cid:5) (cid:12) (cid:18) 1 (cid:229)N z z (10) N i i 1 Risø–R–1218(EN) 9

Description:
Kristensen, Leif; Jensen, G.; Hansen, A.; Kirkegaard, P. Publication date: 2001. Document Version. Publisher's PDF, also known as Version of record.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.