ebook img

Fibonacci and Lucas Numbers with Applications. Volume Two PDF

740 Pages·2019·7.97 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fibonacci and Lucas Numbers with Applications. Volume Two

FIBONACCI AND LUCAS NUMBERS WITH APPLICATIONS PUREANDAPPLIEDMATHEMATICS AWileySeriesofTexts,Monographs,andTracts FoundedbyRICHARDCOURANT EditorsEmeriti:MYRONB.ALLENIII,PETERHILTON,HARRY HOCHSTADT,ERWINKREYSZIG,PETERLAX,JOHNTOLAND Acompletelistofthetitlesinthisseriesappearsattheendofthisvolume. FIBONACCI AND LUCAS NUMBERS WITH APPLICATIONS Volume Two THOMASKOSHY FraminghamStateUniversity Thiseditionfirstpublished2019 ©2019JohnWiley&Sons,Inc. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfrom thistitleisavailableathttp://www.wiley.com/go/permissions. TherightofThomasKoshytobeidentifiedastheauthorofthisworkhasbeenassertedin accordancewithlaw. RegisteredOffices JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley products,visitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Thepublisherandtheauthorsmakenorepresentationsorwarrantieswithrespecttotheaccuracy orcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties;including withoutlimitationanyimpliedwarrantiesoffitnessforaparticularpurpose.Thisworkissoldwith theunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadvice andstrategiescontainedhereinmaynotbesuitableforeverysituation.Inviewofon-going research,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowof informationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurged toreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsforeach chemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesinthe instructionsorindicationofusageandforaddedwarningsandprecautions.Thefactthatan organizationorwebsiteisreferredtointhisworkasacitationand/orpotentialsourceoffurther informationdoesnotmeanthattheauthororthepublisherendorsestheinformationthe organizationorwebsitemayprovideorrecommendationsitmaymake.Further,readersshouldbe awarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthiswork waswrittenandwhenitisread.Nowarrantymaybecreatedorextendedbyanypromotional statementsforthiswork.Neitherthepublishernortheauthorshallbeliableforanydamages arisingherefrom. LibraryofCongressCataloging-in-PublicationData Names:Koshy,Thomas. Title:FibonacciandLucasnumberswithapplications/ThomasKoshy, FraminghamStateUniversity. Description:Secondedition.|Hoboken,NewJersey:JohnWiley&Sons,Inc., [2019]-|Series:Pureandappliedmathematics:aWileyseriesoftexts, monographs,andtracts|Includesbibliographicalreferencesandindex. Identifiers:LCCN2016018243|ISBN9781118742082(cloth:v.2) Subjects:LCSH:Fibonaccinumbers.|Lucasnumbers. Classification:LCCQA246.5.K672019|DDC512.7/2–dc23LCrecordavailableat https://lccn.loc.gov/2016018243 Coverimage:©NDogan/Shutterstock CoverdesignbyWiley Setin10/12pt,TimesNewRomanMTStdbySPiGlobal,Chennai,India PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 Dedicatedto thelovingmemoryof Dr.KolathuMathewAlexander (1930–2017) CONTENTS ListofSymbols xiii Preface xv 31. FibonacciandLucasPolynomialsI 1 31.1. FibonacciandLucasPolynomials 3 31.2. Pascal’sTriangle 18 31.3. AdditionalExplicitFormulas 22 31.4. EndsoftheNumbersl 25 n 31.5. GeneratingFunctions 26 31.6. PellandPell–LucasPolynomials 27 31.7. CompositionofLucasPolynomials 33 31.8. DeMoivre-likeFormulas 35 31.9. Fibonacci–LucasBridges 36 31.10. ApplicationsofIdentity(31.51) 37 31.11. InfiniteProducts 48 31.12. PutnamDelightRevisited 51 31.13. InfiniteSimpleContinuedFraction 54 32. FibonacciandLucasPolynomialsII 65 32.1. Q-Matrix 65 32.2. SummationFormulas 67 32.3. AdditionFormulas 71 32.4. ARecurrencefor𝑓 76 n2 32.5. DivisibilityProperties 82 vii viii Contents 33. CombinatorialModelsII 87 33.1. AModelforFibonacciPolynomials 87 33.2. Breakability 99 33.3. ALadderModel 101 33.4. AModelforPell–LucasPolynomials:LinearBoards 102 33.5. ColoredTilings 103 33.6. ANewTilingScheme 104 33.7. AModelforPell–LucasPolynomials:CircularBoards 107 33.8. ADominoModelforFibonacciPolynomials 114 33.9. AnotherModelforFibonacciPolynomials 118 34. Graph-TheoreticModelsII 125 34.1. Q-MatrixandConnectedGraph 125 34.2. WeightedPaths 126 34.3. Q-MatrixRevisited 127 34.4. ByproductsoftheModel 128 34.5. ABijectionAlgorithm 136 34.6. FibonacciandLucasSums 137 34.7. FibonacciWalks 140 35. GibonacciPolynomials 145 35.1. GibonacciPolynomials 145 35.2. DifferencesofGibonacciProducts 159 35.3. GeneralizedLucasandGinsburgIdentities 174 35.4. GibonacciandGeometry 181 35.5. AdditionalRecurrences 184 35.6. PythagoreanTriples 188 36. GibonacciSums 195 36.1. GibonacciSums 195 36.2. WeightedSums 206 36.3. ExponentialGeneratingFunctions 209 36.4. InfiniteGibonacciSums 215 37. AdditionalGibonacciDelights 233 37.1. SomeFundamentalIdentitiesRevisited 233 37.2. LucasandGinsburgIdentitiesRevisited 238 37.3. FibonomialCoefficients 247 37.4. GibonomialCoefficients 250 37.5. AdditionalIdentities 260 37.6. Strazdins’Identity 264 38. FibonacciandLucasPolynomialsIII 269 38.1. Seiffert’sFormulas 270 38.2. AdditionalFormulas 294 38.3. LegendrePolynomials 314 Contents ix 39. GibonacciDeterminants 321 39.1. ACirculantDeterminant 321 39.2. AHybridDeterminant 323 39.3. Basin’sDeterminant 333 39.4. LowerHessenbergMatrices 339 39.5. DeterminantwithaPrescribedFirstRow 343 40. FibonometryII 347 40.1. FibonometricResults 347 40.2. HyperbolicFunctions 356 40.3. InverseHyperbolicSummationFormulas 361 41. ChebyshevPolynomials 371 41.1. ChebyshevPolynomialsT (x) 372 n 41.2. T (x)andTrigonometry 384 n 41.3. HiddenTreasuresinTable41.1 386 41.4. ChebyshevPolynomialsU (x) 396 n 41.5. Pell’sEquation 398 41.6. U (x)andTrigonometry 399 n 41.7. AdditionandCassini-likeFormulas 401 41.8. HiddenTreasuresinTable41.8 402 41.9. AChebyshevBridge 404 41.10. T andU asProducts 405 n n 41.11. GeneratingFunctions 410 42. ChebyshevTilings 415 42.1. CombinatorialModelsforU 415 n 42.2. CombinatorialModelsforT 420 n 42.3. CircularTilings 425 43. BivariateGibonacciFamilyI 429 43.1. BivariateGibonacciPolynomials 429 43.2. BivariateFibonacciandLucasIdentities 430 43.3. Candido’sIdentityRevisited 439 44. JacobsthalFamily 443 44.1. JacobsthalFamily 444 44.2. JacobsthalOccurrences 450 44.3. JacobsthalCompositions 452 44.4. TriangularNumbersintheFamily 459 44.5. FormalLanguages 468 44.6. AUSAOlympiadDelight 480 44.7. AStoryof1,2,7,42,429,… 483 44.8. Convolutions 490 x Contents 45. JacobsthalTilingsandGraphs 499 45.1. 1×nTilings 499 45.2. 2×nTilings 505 45.3. 2×nTubularTilings 510 45.4. 3×nTilings 514 45.5. Graph-TheoreticModels 518 45.6. DigraphModels 522 46. BivariateTilingModels 537 46.1. AModelfor𝑓 (x,y) 537 n 46.2. Breakability 539 46.3. ColoredTilings 542 46.4. AModelforl (x,y) 543 n 46.5. ColoredTilingsRevisited 545 46.6. CircularTilingsAgain 547 47. VietaPolynomials 553 47.1. VietaPolynomials 554 47.2. Aurifeuille’sIdentity 567 47.3. Vieta–ChebyshevBridges 572 47.4. Jacobsthal–ChebyshevLinks 573 47.5. TwoCharmingVietaIdentities 574 47.6. TilingModelsforV 576 n 47.7. TilingModelsfor𝑣 (x) 582 n 48. BivariateGibonacciFamilyII 591 48.1. BivariateIdentities 591 48.2. AdditionalBivariateIdentities 594 48.3. ABivariateLucasCounterpart 599 48.4. ASummationFormulafor𝑓 (x,y) 600 2n 48.5. ASummationFormulaforl (x,y) 602 2n 48.6. BivariateFibonacciLinks 603 48.7. BivariateLucasLinks 606 49. TribonacciPolynomials 611 49.1. TribonacciNumbers 611 49.2. CompositionswithSummands1,2,and3 613 49.3. TribonacciPolynomials 616 49.4. ACombinatorialModel 618 49.5. TribonacciPolynomialsandtheQ-Matrix 624 49.6. TribonacciWalks 625 49.7. ABijectionBetweentheTwoModels 627 Appendix 631 A.1. TheFirst100FibonacciandLucasNumbers 631 A.2. TheFirst100PellandPell–LucasNumbers 634

Description:
The main focus of Volume One was to showcase the beauty, applications, and ubiquity of Fibonacci and Lucas numbers in many areas of human endeavor. Although these numbers have been investigated for centuries, they continue to charm both creative amateurs and mathematicians alike, and provide excitin
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.