ebook img

Fiberglass and Glass Technology: Energy-Friendly Compositions and Applications PDF

478 Pages·2010·6.44 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fiberglass and Glass Technology: Energy-Friendly Compositions and Applications

Fiberglass and Glass Technology · Frederick T. Wallenberger Paul A. Bingham Editors Fiberglass and Glass Technology Energy-Friendly Compositions and Applications 123 Editors FrederickT.Wallenberger PaulA.Bingham Consultant DepartmentofEngineeringMaterials 708DuncanAvenue UniversityofSheffield SirRobertHadfieldBuilding Apartment1108 SheffieldS13JD Pittsburgh,Pennsylvania15237 UnitedKingdom UnitedStates p.a.bingham@sheffield.ac.uk [email protected] ISBN978-1-4419-0735-6 e-ISBN978-1-4419-0736-3 DOI10.1007/978-1-4419-0736-3 SpringerNewYorkDordrechtHeidelbergLondon LibraryofCongressControlNumber:2009938639 ©SpringerScience+BusinessMedia,LLC2010 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Usein connectionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface This book offers a comprehensive view of fiberglass and glass technology with emphasis on energy-friendly compositions, manufacturing practices, and appli- cations, which have recently emerged and continue to emerge. Energy-friendly compositions are variants of incumbent fiberglass and glass compositions. They are obtained by reformulation of incumbent glass compositions in order to reduce the melt viscosity and increase the melting rate, thereby saving process energy and reducing environmental emissions. As a result, new energy-friendly compo- sitionsareexpectedtobecomeakeyfactorinthefutureforthefiberglassandglass industries.Thecontributorstothebookconsistofbothacademicandindustrialsci- entists. This book is therefore dedicated to those in the academic and industrial communitywhoseekanunderstandingofthepastinordertomakeprogressinthe future. Thisbookconsistsofthreeinterrelatedsections.PartIreviewsawiderangeof continuous glass fibers, their compositions, and properties. Dr. F. T. Wallenberger authoredChapter1,whichreviewsimportantglassfibersrangingfromcommercial 100% SiO2 glass fibers and commercial multi-oxide glass fibers to experimen- tal glass fibers containing 81% Al O . Dr. Wallenberger also authored Chapter 2. 2 3 Thischapteroffersanewmethod(trendlinedesign)fordesigningenvironmentally andenergy-friendlyE-,ECR-,A-,andC-glasscompositionstoreducetheprocess energy by compositional reformulation. Few fiberglass applications are based on yarns; most are based on composites. Dr. J. H. A van der Woude and Dr. E. L. Lawton authored Chapter 3, which reviews fiberglass composite engineering with an important sub-chapter on windmill blade construction. Dr. A. V. Longobardo wrote Chapter 4. It reviews the glass fibers which became available as reinforce- ment for printed circuit boards and analyzes their compositions as well as the needs of the market. Finally Dr. R. L. Hausrath and Dr. A. Longobardo authored Chapter 5, which reviews high-strength glass fibers and analyzes existing and emergingmarketsfortheseproducts. Part II of the book deals with soda–lime–silica glass technology. The first two chapters(Chapters6and7)parallelthefirsttwochaptersinPartI(Chapters1and 2).Dr.Ing.A.SmrcˇekwroteChapter6.Itisdevotedtoawiderangeofindustrial flat,container, and technical glass compositions and toan in-depth review of their properties. Dr. P. A. Bingham authored Chapter 7. It deals with the design of new v vi Preface energy-friendly flat, container, and technical glass melts through reformulation of existingcompositionalvariantstoreducetheprocessenergy. Part III of the book deals with emerging glass melting science and technology, and is conceptually applicable to both glass and fiberglass melts. Prof. Dr. H.-J. Hoffmann authored Chapter 8, which offers new insights into the basics of melt- ing and glass formation at the most fundamental level. Prof. Dr. R. Conradt wrote Chapter9,whichdealswiththethermodynamicsofglassmelting,offersamodelto predict the thermodynamic properties of industrial multi-component glasses from their chemical compositions, addresses the role of individual raw materials in the meltingprocessofE-glass,andfacilitatesthecalculationoftheheatofthebatch-to- meltconversion.Prof.Dr.H.A.SchaefferandPriv.Doz.Dr.-Ing.H.Müller-Simon authoredChapter10,whichreviewstheuseofinsitusensorsformonitoringglass melt properties and monitoring species in the combustion space and also reviews redox control of glass melting with high levels of recycled glass to enhance the environmentallyfriendlyvalueoftheresultingglass.Dr.R.GontermanandDr.M. A.WeinsteinauthoredChapter11,whichdealswiththerecentlyemergingplasma melttechnologyanditspotentialapplications. Dr.WallenbergerwishestoacknowledgehisyearsatPPGIndustriesfrom1995 to 2008, especially the invitation he received from the late John Horgan, Vice President, Fiberglass, to join PPG, and the support of Dr. Jaap van der Woude, who as Director of Research, encouraged him in 1997 to pursue innovative com- positionalfiberglassresearch.Dr.Wallenbergergratefullyacknowledgesthehelpof Dr. Bingham, co-editor of the book, and the valuable contributions of the chapter authors.Finally,Dr.Wallenbergerwishestoacknowledgethethoughtfulsupportof Jennifer Mirski who, as assistant editor, Springer Publisher, helped in editing the entirebook. Dr. Bingham wishes to thank the following people for their help, insight, com- ments, and encouragement: Dr. Fred Wallenberger, co-editor of the book; Prof. Michael Cable for many interesting discussions; all of our contributing authors; colleagues present and past at the Society of Glass Technology, the University of Sheffield,andtheBritishGlassManufacturer’sConfederation;andthemanyother individuals with whom he has held discussions over the years on the fascinating subjectofglass.Finallyandmostimportantly,hethankshisfamilyfortheirendless patience,love,support,andencouragement. F.T.Wallenberger Pittsburgh,PA,USA P.A.Bingham Sheffield,UK About the Editors Dr. Frederick T. Wallenberger was an instructor in Chemistry at Fordham University(1957–1958),aresearchfellowatHarvard(1958–1959),andascientist atDuPontFibers,PioneeringResearchLaboratory(1959–1992).Heretiredin1992 fromDuPontandbecamearesearchprofessor(MaterialsScience)attheUniversity of Illinois in Urbana-Champaign (1992) and a visiting professor (Textiles) at the University of California in Davis (1994). He joined PPG as a staff scientist in 1995,retiredin2008,andservesasaconsultantnow.Hestudiedtherelationships between structures, properties, and value-in-use of new materials and contributed to the commercialization of new fibers through “intrapreneurial” research, project management,andtechnologytransfer.Heisanexpertinthefieldsofadvancedglass fibers, ceramic fibers, carbon fibers, natural fibers, polymer fibers, single crystal fibers,andcomposites. Dr.Wallenbergerhasover150papersintherefereedscientificliterature,includ- ing three in the journal science, edited four books (Advanced Inorganic Fibers, 1999; Advanced Fibers, 2002; Natural Fibers, 2004; and Fiberglass and Glass Technology, 2009), wrote two recent review articles (Introduction to Reinforcing Fibers and Glass Fibers, ASM Handbook on Composites, 2002), and received 10 US Patents. He chaired three major symposiums (“Chemistry and Environment,” American Chemical Society, 1974; “Advanced Fibers, Plastics and Composites,” Materials Research Society, 2001; “Behavior of Glass Melts,” Gordon Research Conference, 2005), gave three invited Gordon Research Conference lectures (“Aramid Fibers,” 1964; “Foamed Polyester Fibers,” 1975; and “Glass Fibers,” 1992) and wrote the first review article that included KevlarTM (“The Chemistry ofHeatResistantPolymerFibers,”AngewandteChemie,1964) Dr. Wallenberger received the Environmental Respect Award from DuPont (1992). He is a member of the Association of Harvard Chemists (1958–) and was elected a Fellow of the American Ceramic Society (2005). His biography appears in several standard references including Who’s Who in the World, Who’s Who in America,andWho’sWhoinScienceandEngineering. Dr. Paul A. Bingham received his BEng (Hons) degree in Materials Science and Engineering from the University of Sheffield in 1995. He then studied toward a Ph.D.(1995to1999,thesistitle“TheEnvironmentofIroninSilicateGlasses”)at vii viii AbouttheEditors the same institution, which hosts one of the world’s premier glass science depart- ments.From1999to2003hewasemployedasatechnologistbyGlassTechnology Services Ltd (GTS) a subsidiary of the British Glass manufacturers confederation wherehecarriedoutawiderangeofglassandceramic-relatedR&D,projectman- agement, and industrial production problem solving. He was promoted to senior technologist in 2001. Projects ranged from laboratory-scale development of soda– lime–silica glass, E-glass, lead crystal glass, sealing glass, and glasses with novel physicalpropertiestomanagingindustrial-scaleglasscompositions,melting,recy- cling, energy, and emissions. Environmentally friendly glass compositions that he developedhavereachedfull-scaleproduction.In2004,Dr.Binghamtookupaposi- tion as postdoctoral research associate at the Immobilisation Science Laboratory (ISL), University of Sheffield. Dr. Bingham’s chief research interests lie at the boundary between materials science and environmental disciplines. These include composition/structure/property relations in novel glass-forming systems; formula- tion of glasses for the safe immobilization of legacy and problematic nuclear and toxicwastes;modificationofcommercialglassandceramicmaterialsandthere-use ofwastematerialsthereinforenvironmentalbenefit,energyefficiency,andreduced atmosphericemissions. Dr.Binghamhaspublishedover30peer-reviewedscientificpapersandheregu- larlyreviewsmanuscriptsforseveralmajorinternationaljournals.Hehaspresented hisresearch,chairedsessions,andgiveninvitedpresentationsatanumberofinter- nationalconferencesonglassscienceandwastemanagement.Hehasastrongtrack record in obtaining funding and access to scientific facilities from both academic andindustrialsourcesandhehasbuiltmanylastingnationalandinternationalcol- laborations.HehasbeenanactivememberoftheSocietyofGlassTechnologyfor over 10 years and was elected onto the Basic Science and Technology Committee in2000.In2004hewaselectedcommitteesecretary. Contents PartI ContinuousGlassFibers 1 CommercialandExperimentalGlassFibers . . . . . . . . . . . . 3 FrederickT.Wallenberger 1.1 Overview:GlassMeltandFiberFormation. . . . . . . . . . . 3 1.1.1 PrinciplesofGlassMeltFormation . . . . . . . . . . 3 1.1.2 PrinciplesofGlassFiberFormation . . . . . . . . . . 9 1.1.3 StructureofMeltsandFibers . . . . . . . . . . . . . 11 1.1.4 SummaryandConclusions . . . . . . . . . . . . . . 15 1.2 SilicaFibers,Sliver,andFabrics(95–100%SiO ) . . . . . . . 15 2 1.2.1 UltrapureSilicaFibers(99.99–99.999%SiO ) . . . . 15 2 1.2.2 PureSilicaSliverandFabrics(95.5–99.5%SiO ) . . 19 2 1.2.3 SummaryandConclusions . . . . . . . . . . . . . . 22 1.3 SilicateGlassFibers(50–70%SiO ,1–25%Al O ) . . . . . . 23 2 2 3 1.3.1 FormingGlassFibersfromStrongViscousMelts. . . 23 1.3.2 General-PurposeSilicateGlassFibers . . . . . . . . . 28 1.3.3 Special-PurposeSilicateGlassFibers . . . . . . . . . 34 1.3.4 Non-round,BicomponentandHollowSilicateFibers . 54 1.3.5 SummaryandConclusions . . . . . . . . . . . . . . 60 1.4 AluminateGlassFibers(≤81%Al O ,≤50%SiO ) . . . . . 60 2 3 2 1.4.1 GlassFibersfromFragileMelts(25–50% Al O ,10–4%SiO ). . . . . . . . . . . . . . . . . . 60 2 3 2 1.4.2 GlassFibersfromInviscidMelts (55–81%Al O ,4–0%SiO ) . . . . . . . . . . . . . 66 2 3 2 1.5 Appendix:Single-CrystalAluminaFibers . . . . . . . . . . . 77 1.5.1 Single-CrystalFibersfromInviscidMelts . . . . . . . 77 1.5.2 TheFutureofAluminaandAluminateFibers . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2 DesignofEnergy-FriendlyGlassFibers . . . . . . . . . . . . . . . 91 FrederickT.Wallenberger 2.1 PrinciplesofDesigningNewCompositions . . . . . . . . . . 91 2.1.1 Compositional,Energy,andEnvironmentalIssues . . 91 ix x Contents 2.1.2 TrendLineDesignofNewFiberglassCompositions . 94 2.2 Energy-FriendlyAluminosilicateGlassFibers . . . . . . . . . 99 2.2.1 NewEnergy-FriendlyE-GlassVariantswith <2%B O . . . . . . . . . . . . . . . . . . . . . . 99 2 3 2.2.2 NewEnergy-FriendlyE-GlassVariantswith 2–10%B O . . . . . . . . . . . . . . . . . . . . . 111 2 3 2.2.3 NewEnergy-andEnvironmentallyFriendly ECR-GlassVariants . . . . . . . . . . . . . . . . . . 114 2.3 Energy-FriendlySoda–Lime–SilicaGlassFibers. . . . . . . . 116 2.3.1 NewEnergy-FriendlyA-andC-GlassCompositions . 117 2.4 Summary,Conclusions,andPathForward . . . . . . . . . . . 119 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3 CompositeDesignandEngineering . . . . . . . . . . . . . . . . . 125 J.H.A.vanderWoudeandE.L.Lawton 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.1.1 ContinuousFibersforReinforcement . . . . . . . . . 125 3.1.2 E-GlassFibers . . . . . . . . . . . . . . . . . . . . . 127 3.1.3 FiberglassManufacturing . . . . . . . . . . . . . . . 128 3.1.4 FiberglassSize . . . . . . . . . . . . . . . . . . . . . 129 3.1.5 CompositeMechanicalProperties . . . . . . . . . . . 130 3.1.6 Products . . . . . . . . . . . . . . . . . . . . . . . . 138 3.2 ThermosetCompositeMaterial . . . . . . . . . . . . . . . . . 141 3.2.1 LiquidResinProcessingTechniques . . . . . . . . . 142 3.2.2 ThermosettingMatrixResins . . . . . . . . . . . . . 148 3.2.3 Fillers . . . . . . . . . . . . . . . . . . . . . . . . . 154 3.2.4 ReleaseAgents . . . . . . . . . . . . . . . . . . . . . 155 3.3 ReinforcedThermoplasticMaterials . . . . . . . . . . . . . . 156 3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 156 3.3.2 SemifinishedMaterialsBasedonThermoplastics . . . 158 3.4 CompositesforWindTurbines . . . . . . . . . . . . . . . . . 168 3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 168 3.4.2 RawMaterials . . . . . . . . . . . . . . . . . . . . . 169 3.4.3 Blade-ManufacturingTechniques . . . . . . . . . . . 169 3.4.4 BladeDesignMethodologies . . . . . . . . . . . . . 170 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 4 GlassFibersforPrintedCircuitBoards . . . . . . . . . . . . . . . 175 AnthonyV.Longobardo 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 4.1.1 PrintedCircuitBoardRequirementsandTheir ImplicationsforFiberglass . . . . . . . . . . . . . . 176 4.1.2 Fiberglass’RoleinPCBConstruction . . . . . . . . . 177 4.1.3 ElectricalAspects . . . . . . . . . . . . . . . . . . . 179 4.1.4 StructuralAspects . . . . . . . . . . . . . . . . . . . 181 Contents xi 4.2 GlassCompositionalFamilies . . . . . . . . . . . . . . . . . 184 4.2.1 ImprovementsInitiallyBasedonE-Glass . . . . . . . 184 4.2.2 D-GlassandItsCompositionalImprovements . . . . 188 4.3 FutureNeedsofthePCBMarket . . . . . . . . . . . . . . . . 191 4.3.1 TheElectronicsManufacturer’sRoadmap. . . . . . . 191 4.3.2 WhatThisMeansfortheBoardandYarnMakers . . 192 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5 High-StrengthGlassFibersandMarkets . . . . . . . . . . . . . . 197 RobertL.HausrathandAnthonyV.Longobardo 5.1 AttributesofHigh-StrengthGlass . . . . . . . . . . . . . . . 197 5.1.1 Strength . . . . . . . . . . . . . . . . . . . . . . . . 198 5.1.2 ElasticModulus . . . . . . . . . . . . . . . . . . . . 203 5.1.3 ThermalStability . . . . . . . . . . . . . . . . . . . 205 5.2 GlassCompositionalFamilies . . . . . . . . . . . . . . . . . 206 5.2.1 S-Glass . . . . . . . . . . . . . . . . . . . . . . . . . 207 5.2.2 R-Glass. . . . . . . . . . . . . . . . . . . . . . . . . 208 5.2.3 OtherHigh-StrengthGlasses . . . . . . . . . . . . . 209 5.3 High-StrengthGlassFibersinPerspective . . . . . . . . . . . 210 5.3.1 TheCompetitiveMaterialLandscape . . . . . . . . . 210 5.3.2 InherentAdvantagesofContinuousGlassFibers . . . 215 5.4 MarketsandApplications . . . . . . . . . . . . . . . . . . . . 215 5.4.1 Defense–HardCompositeArmor . . . . . . . . . . 216 5.4.2 Aerospace–RotorsandInteriors . . . . . . . . . . . 218 5.4.3 Automotive–Belts,Hoses,andMufflers . . . . . . . 220 5.4.4 IndustrialReinforcements–PressureVessels . . . . . 221 5.5 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . 222 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 PartII Soda–Lime–SilicaGlasses 6 CompositionsofIndustrialGlasses . . . . . . . . . . . . . . . . . 229 AntonínSmrcˇek 6.1 GuidelinesforIndustrialGlassCompositionSelection . . . . . 229 6.1.1 Economics . . . . . . . . . . . . . . . . . . . . . . . 230 6.1.2 DemandsontheGlassMelt . . . . . . . . . . . . . . 230 6.1.3 Meltability . . . . . . . . . . . . . . . . . . . . . . . 232 6.1.4 Workability . . . . . . . . . . . . . . . . . . . . . . 233 6.1.5 ChoiceofRawMaterials . . . . . . . . . . . . . . . 235 6.1.6 CulletEffect–GlassMeltProductionHeat . . . . . . 236 6.1.7 GlassRefining . . . . . . . . . . . . . . . . . . . . . 237 6.2 IndustrialGlassCompositions . . . . . . . . . . . . . . . . . 240 6.2.1 HistoricalDevelopment . . . . . . . . . . . . . . . . 240 6.2.2 FlatGlass . . . . . . . . . . . . . . . . . . . . . . . 242 6.2.3 ContainerGlass . . . . . . . . . . . . . . . . . . . . 245 6.2.4 Lead-FreeUtilityGlass . . . . . . . . . . . . . . . . 250

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.