ebook img

Fiber Optics Physics and Technology PDF

299 Pages·2010·14.606 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fiber Optics Physics and Technology

Fiber Optics Fedor Mitschke Fiber Optics Physics and Technology 123 Prof.Dr.FedorMitschke Universita¨tRostock Institutfu¨rPhysik Universita¨tsplatz3 18055Rostock Germany [email protected] ISBN978-3-642-03702-3 e-ISBN978-3-642-03703-0 DOI10.1007/978-3-642-03703-0 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2009938485 (cid:2)c Springer-VerlagBerlinHeidelberg2009 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamarS.L. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Absent a Telephone, a Bicyclist Had to Save the World On the height of the Cuban missile crisis in 1962, no direct telecommunication line existed between the White House and the Kremlin. All messages going back and forth had to be sent through intermediaries. The world teetered on the brink of nuclear Armageddon when in the evening of October 23 President JohnF.Kennedysenthisbrother,RobertKennedy,overtotheSovietEmbassy foralast-ditchefforttoresolvethecrisispeacefully. Robertpresentedaproposal how both sides could stand down without losing face. Right after the meeting, AmbassadorAnatolyDobryninhastenedtowriteareporttoNikitaKhrushchev inMoscow. AbicyclecourierwascalledintotakethislettertoaWesternUnion telegraphstation,andDobryninpersonallyinstructedhimtogostraighttothe stationbecausethemessagewasimportant–whichwashardlyanexaggeration. That man on the bicycle, in my view, has saved the world. Most likely, without even knowing. Ayearlater,adirecttelegraphlinewasinstalledwhichwaspopularlycalled the “red telephone.” (There never was an actual red telephone sitting in the Oval Office.) A lesson had been learned: Communication can be vital when it comes to solving conflicts. Todaythesituationisvastlydifferentfromwhatitwaslessthanhalfacen- tury ago. The world is knit together by a network of connections of economic, political, cultural, and other nature. That is only possible because virtually instantaneouslong-distancecommunicationataffordablecosthasbecomeubiq- uitous. Inearliercenturies,importantnews–liketheoutcomeofabattle,say– often was received only several weeks later. Today we are not the least bit as- tonished when we watch unfolding events in the remotest corner of the planet in real time, living color, and stereophonic sound. The biggest machine on earth is the international telephone network. It allows you to call this minute, on a lark, your neighbor, your friend in New Zealand, or the Department of Sanitation in Tokyo. And we got used to it! Behind the scenes, of course, there is a substantial investment in technology going into this, and more effort is required to keep up with society’s ever-rising demands. Consider international calls: For some time satellites seemed to be the most efficient and elegant means. Just a decade or two later, they were no more up to the growing task, and a new, earthbound technology took over: optical fiber transmission. V VI Absent a Telephone, a Bicyclist Had to Save the World Meanwhile, the amount of data handled by fibers exceeds anything that older technology could have handled ever. Today’s Internet traffic would not exist without fiber, and the cost of a long-distance phone call would still be as expensive as it was a quarter century ago. Opticalfibers,mostlymadeofglassbutsometimesalsoothermaterials,are the subject of this book. The development toward their maturity we enjoy to- day was mostly driven by the challenges of telecommunications applications. Research has faced quite a number of questions concerning basic physics of guided-wave optics, and many researchers around the world toiled for answers. Asaresult,fiberscandomorethanwasanticipated: Besidestheobviousappli- cationintelecommunications,theyhavealsobecomeusefulindataacquisition. This is why engineers and technicians working in either field need to know not onlytheirelectricalengineering,butincreasinglyalsosomeoptics. Atthesame time, it emerges that nonlinear physical processes in fibers will lead to exciting new technology. This book has its origin in lectures for students of physics and engineering whichIgaveattheuniversitiesinHannover,Mu¨nster,Rostock(allinGermany), and Lule˚a(Sweden). The book first appeared in the German language. It was well received, but the German-speaking part of the world is not very big, and I heard opinions that an English version would find a larger audience. The book presents the physical foundations in some detail, but in the in- terest of limited mathematical challenges, there is no fully vectorial treatment of the modes. On the other hand, I found it important to devote some space to nonlinear processes on grounds that over the years, they can only become more relevant than they already are. I proceed in outlining the limitation of thedata-carryingcapacityoffibersastheywillbereachedinacoupleofyears, i.e., at a time when the student readers of this book will have entered their professional life as engineers or scientists, dealing with these questions. For the English edition, I have expanded certain sections slightly, to keep up to date with current developments. It is my hope that both natural scientists and engineers will find the book helpful. Maybe physicist will think that some segments are quite “technical,” whileengineersmayfeelthatatreatmentofnonlinearopticsmaybenotsomuch for them. My answer to that is that either subject is required to form the full picture. In this context, it is sometimes unfortunate that the structure of our universitiesemphasizesthedistinctionbetweennaturalscientistsandengineers more than is warranted. I envision that, in analogy to electronics engineers, we will see the emergence of photonics engineers. They would have good practical skills on the technical side and at the same time a deep understanding of the underlying physical mechanisms. Contents I Introduction 1 1 A Quick Survey 3 II Physical Foundations 13 2 Treatment with Ray Optics 15 2.1 Waveguiding by Total Internal Reflection . . . . . . . . . . . . . 15 2.2 Step Index Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Modal Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Gradient Index Fibers . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Mode Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6 Shortcomings of the Ray-Optical Treatment . . . . . . . . . . . . 24 3 Treatment with Wave Optics 25 3.1 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Linear and Nonlinear Refractive Index . . . . . . . . . . . . . . . 28 3.3.1 Linear Case . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.2 Nonlinear Case . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4 Separation of Coordinates . . . . . . . . . . . . . . . . . . . . . . 30 3.5 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.6 Solutions for m = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.7 Solutions for m = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.8 Solutions for m > 1 . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.9 Field Amplitude Distribution of the Modes . . . . . . . . . . . . 38 3.10 Numerical Example. . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.11 Number of Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.12 A Remark on Microwave Waveguides . . . . . . . . . . . . . . . . 43 3.13 Energy Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Chromatic Dispersion 47 4.1 Material Dispersion. . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1.1 Treatment with Derivatives to Wavelength. . . . . . . . . 50 4.1.2 Treatment with Derivatives to Frequency . . . . . . . . . 51 4.2 Waveguide and Profile Dispersion . . . . . . . . . . . . . . . . . . 53 4.3 Normal, Anomalous, and Zero Dispersion . . . . . . . . . . . . . 54 4.4 Impact of Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . 55 VII VIII Contents 4.5 Optimized Dispersion: Alternative Refractive Index Profiles . . . 58 4.5.1 Gradient Index Fibers . . . . . . . . . . . . . . . . . . . . 58 4.5.2 W Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.5.3 T Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.5.4 Quadruple-Clad Fibers. . . . . . . . . . . . . . . . . . . . 61 4.5.5 Dispersion-Shifted or Dispersion-Flattened? . . . . . . . . 62 4.6 Polarization Mode Dispersion . . . . . . . . . . . . . . . . . . . . 64 4.6.1 Quantifying Polarization Mode Dispersion . . . . . . . . . 64 4.6.2 Avoiding Polarization Mode Dispersion . . . . . . . . . . 65 4.7 Microstructured Fibers . . . . . . . . . . . . . . . . . . . . . . . . 67 4.7.1 Holey Fibers . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.7.2 Photonic Crystal Fibers . . . . . . . . . . . . . . . . . . . 73 4.7.3 New Possibilities . . . . . . . . . . . . . . . . . . . . . . . 74 5 Losses 75 5.1 Loss Mechanisms in Glass . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Bend Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3 Other Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.4 Ultimate Reach and Possible Alternative Constructions . . . . . 80 5.4.1 Heavy Molecules . . . . . . . . . . . . . . . . . . . . . . . 81 5.4.2 Hollow Core Fibers . . . . . . . . . . . . . . . . . . . . . . 82 5.4.3 Sapphire Fibers . . . . . . . . . . . . . . . . . . . . . . . . 83 5.4.4 Plastic Fibers . . . . . . . . . . . . . . . . . . . . . . . . . 83 III Technical Conditions for Fiber Technology 85 6 Manufacturing and Mechanical Properties 87 6.1 Glass as a Material . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.1.1 Historical Issues . . . . . . . . . . . . . . . . . . . . . . . 87 6.1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.1.3 How Glass Breaks . . . . . . . . . . . . . . . . . . . . . . 91 6.2 Manufacturing of Fibers . . . . . . . . . . . . . . . . . . . . . . . 93 6.2.1 Making a Preform . . . . . . . . . . . . . . . . . . . . . . 93 6.2.2 Pulling Fibers from the Preform . . . . . . . . . . . . . . 96 6.3 Mechanical Properties of Fibers . . . . . . . . . . . . . . . . . . . 98 6.3.1 Pristine Glass . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3.2 Reduction of Structural Stability . . . . . . . . . . . . . . 99 7 How to Measure Important Fiber Characteristics 101 7.1 Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.2 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.3 Geometry of Fiber Structure . . . . . . . . . . . . . . . . . . . . 106 7.4 Geometry of Amplitude Distribution . . . . . . . . . . . . . . . . 108 7.4.1 Near-Field Methods . . . . . . . . . . . . . . . . . . . . . 108 7.4.2 Far-Field Methods . . . . . . . . . . . . . . . . . . . . . . 110 7.5 Cutoff Wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.6 Optical Time Domain Reflectometry (OTDR) . . . . . . . . . . . 114 Contents IX 8 Components for Fiber Technology 117 8.1 Cable Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.2 Preparation of Fiber Ends . . . . . . . . . . . . . . . . . . . . . . 119 8.3 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 8.3.1 Nonpermanent Connections . . . . . . . . . . . . . . . . . 120 8.3.2 Permanent Connections . . . . . . . . . . . . . . . . . . . 123 8.4 Elements for Spectral Manipulation. . . . . . . . . . . . . . . . . 124 8.4.1 Fabry–Perot Filters . . . . . . . . . . . . . . . . . . . . . 124 8.4.2 Fiber–Bragg Structures . . . . . . . . . . . . . . . . . . . 124 8.5 Elements for Polarization Manipulation . . . . . . . . . . . . . . 125 8.5.1 Polarization Adjusters . . . . . . . . . . . . . . . . . . . . 125 8.5.2 Polarizers . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8.6 Direction-Dependent Devices . . . . . . . . . . . . . . . . . . . . 128 8.6.1 Isolators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 8.6.2 Circulators . . . . . . . . . . . . . . . . . . . . . . . . . . 130 8.7 Couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.7.1 Power Splitting/Combining Couplers . . . . . . . . . . . . 131 8.7.2 Wavelength-Dependent Couplers . . . . . . . . . . . . . . 133 8.8 Optical Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.8.1 Amplifiers Involving Active Fibers . . . . . . . . . . . . . 135 8.8.2 Amplifiers Involving Semiconductor Devices . . . . . . . . 138 8.9 Light Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 8.9.1 Light from Semiconductors . . . . . . . . . . . . . . . . . 139 8.9.2 Luminescent Diodes . . . . . . . . . . . . . . . . . . . . . 140 8.9.3 Laser Diodes . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.9.4 Fiber Lasers. . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.10 Optical Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.10.1 Principle of pn and pin Photodiodes . . . . . . . . . . . . 146 8.10.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8.10.3 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8.10.4 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8.10.5 Avalanche Diodes. . . . . . . . . . . . . . . . . . . . . . . 149 IV Nonlinear Phenomena in Fibers 151 9 Basics of Nonlinear Processes 153 9.1 Nonlinearity in Fibers vs. in Bulk . . . . . . . . . . . . . . . . . 153 9.2 Kerr Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.3 Nonlinear Wave Equation . . . . . . . . . . . . . . . . . . . . . . 156 9.3.1 Envelope Equation Without Dispersion . . . . . . . . . . 156 9.3.2 Introducing Dispersion by a Fourier Technique . . . . . . 158 9.3.3 The Canonical Wave Equation: NLSE . . . . . . . . . . . 160 9.3.4 Discussion of Contributions to the Wave Equation . . . . 161 9.3.5 Dimensionless NLSE . . . . . . . . . . . . . . . . . . . . . 162 9.4 Solutions of the NLSE . . . . . . . . . . . . . . . . . . . . . . . . 165 9.4.1 Modulational Instability . . . . . . . . . . . . . . . . . . . 165 9.4.2 The Fundamental Soliton . . . . . . . . . . . . . . . . . . 165 9.4.3 How to Excite the Fundamental Soliton . . . . . . . . . . 170 9.4.4 Collisions of Solitons . . . . . . . . . . . . . . . . . . . . . 174 X Contents 9.4.5 Higher-Order Solitons . . . . . . . . . . . . . . . . . . . . 174 9.4.6 Dark Solitons . . . . . . . . . . . . . . . . . . . . . . . . . 176 9.5 Digression: Solitons in Other Fields of Physics . . . . . . . . . . 178 9.6 More χ(3) Processes . . . . . . . . . . . . . . . . . . . . . . . . . 180 9.7 Inelastic Scattering Processes . . . . . . . . . . . . . . . . . . . . 182 9.7.1 Stimulated Brillouin Scattering . . . . . . . . . . . . . . . 183 9.7.2 Stimulated Raman Scattering . . . . . . . . . . . . . . . . 188 10 A Survey of Nonlinear Processes 193 10.1 Normal Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . 193 10.1.1 Spectral Broadening . . . . . . . . . . . . . . . . . . . . . 193 10.1.2 Pulse Compression . . . . . . . . . . . . . . . . . . . . . . 195 10.1.3 Chirped Amplification . . . . . . . . . . . . . . . . . . . . 195 10.1.4 Optical Wave Breaking . . . . . . . . . . . . . . . . . . . 197 10.2 Anomalous Dispersion . . . . . . . . . . . . . . . . . . . . . . . . 199 10.2.1 Modulational Instability . . . . . . . . . . . . . . . . . . . 199 10.2.2 Fundamental Solitons . . . . . . . . . . . . . . . . . . . . 200 10.2.3 Soliton Compression . . . . . . . . . . . . . . . . . . . . . 201 10.2.4 The Soliton Laser and Additive Pulse Mode Locking . . . 202 10.2.5 Pulse Interaction . . . . . . . . . . . . . . . . . . . . . . . 203 10.2.6 Self-Frequency Shift . . . . . . . . . . . . . . . . . . . . . 205 10.2.7 Long-Haul Data Transmission with Solitons . . . . . . . . 207 V Technological Applications of Optical Fibers 209 11 Applications in Telecommunications 211 11.1 Fundamentals of Radio Systems Engineering . . . . . . . . . . . 211 11.1.1 Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 11.1.2 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . 212 11.1.3 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 11.1.4 Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 11.1.5 Multiplexing in Time and Frequency: TDM and WDM . 218 11.1.6 On and Off: RZ and NRZ . . . . . . . . . . . . . . . . . . 220 11.1.7 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 11.1.8 Transmission and Channel Capacity . . . . . . . . . . . . 224 11.2 Nonlinear Transmission . . . . . . . . . . . . . . . . . . . . . . . 225 11.2.1 A Single Wavelength Channel . . . . . . . . . . . . . . . . 226 11.2.2 Several Wavelength Channels . . . . . . . . . . . . . . . . 229 11.2.3 Alternating Dispersion (“Dispersion Management”) . . . 231 11.3 Technical Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 11.3.1 Monitoring of Operations . . . . . . . . . . . . . . . . . . 234 11.3.2 Eye Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 236 11.3.3 Filtering to Reduce Crosstalk . . . . . . . . . . . . . . . . 236 11.4 Telecommunication: A Growth Industry . . . . . . . . . . . . . . 238 11.4.1 Historical Development . . . . . . . . . . . . . . . . . . . 238 11.4.2 The Limits to Growth . . . . . . . . . . . . . . . . . . . . 243 12 Fiber-Optic Sensors 247 12.1 Why Sensors? Why Fiber-Optic? . . . . . . . . . . . . . . . . . . 247

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.