FiberOpticalParametricAmplifiers,OscillatorsandRelatedDevices Fiberopticalparametricamplifiers(OPAs)showgreatpotentialforapplicationsinhigh- speedopticalcommunicationsystems.Thisisthefirstbooktoprovidecomprehensive coverageofthetheoryandpracticeofOPAsandrelateddevices,includingfiberoptical parametricoscillators(OPOs). Followinganintroductiontothefield,thetheoryandtechniquesbehindalltypesof fiber OPA are covered, starting from first principles. Topics include scalar and vector OPA theory, the nonlinear Schro¨dinger equation, OPO theory, and the quantum noise figure of fiber OPAs. The challenges of making fiber OPAs practical for a number of applicationsarediscussed,andasurveyofthestateoftheartinfeasibilitydemonstrations andperformanceevaluationsisprovided.ThecapabilitiesandlimitationsofOPAsare presented,asarethepotentialapplicationsforbothOPAsandOPOsandtheprospects forfuturedevelopmentsinthefield.Thetheoreticaltoolsdevelopedinthistextcanalso beappliedtootherareasofnonlinearoptics. Thisbookshouldprovideavaluableresourceforresearchers,advancedpractitioners, andgraduatestudentsinoptoelectronics. Michel E. Marhic is Chair Professor at the Institute of Advanced Telecommu- nications at the University of Wales, Swansea. He was awarded a Ph.D. in Electrical EngineeringfromtheUniversityofCalifornia,LosAngeles,in1974.Hehasheldsev- eralpositionsintheacademicworldintheUSovertheyears.Heistheco-founderof Holicon,HolographicIndustries,andOPALLaboratories.AseniormemberoftheIEEE andamemberofOSA,hehastakenouteightpatentsandauthoredorco-authoredabout 300publications.Hisrecentresearchinterestsincludeopticalcommunicationsystems andnonlinearopticalineractionsinfibers. Fiber Optical Parametric Amplifiers, Oscillators and Related Devices MICHEL E. MARHIC UniversityofWales,Swansea cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore,Sa˜oPaulo CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521861021 (cid:2)C CambridgeUniversityPress2008 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithout thewrittenpermissionofCambridgeUniversityPress. Firstpublished2008 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcatalogrecordforthispublicationisavailablefromtheBritishLibrary ISBN 978-0-521-86102-1hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Acknowledgments page ix 1 Introduction 1 References 7 2 Propertiesofsingle-modeopticalfibers 9 2.1 Modeprofile 9 2.2 Loss 10 2.3 Propagationconstantanddispersion 10 2.4 Longitudinalfluctuationsofthezero-dispersionwavelength 14 2.5 Temperaturedependenceofthezero-dispersionwavelength 14 2.6 Fiberbirefringence 15 2.7 Nonlinearities 17 2.8 TypesoffiberusedforOPAwork 21 References 27 3 ScalarOPAtheory 31 3.1 Introduction 31 3.2 TypesoffiberOPA 31 3.3 DerivationoftheOPAequationsandγ 35 3.4 Scalinglaws 40 3.5 Solutionofthetwo-pumpOPAequations 42 3.6 Theoryforone-pumpOPA 60 3.7 Caseofnodispersionwithloss 69 3.8 SolutionsfordegenerateOPAs 70 3.9 Conclusion 75 References 75 4 VectorOPAtheory 78 4.1 Introduction 78 4.2 Isotropicfibers 78 4.3 Fiberswithconstantbirefringence 93 vi Contents 4.4 Fiberswithrandombirefringence 98 4.5 Conclusion 107 References 108 5 Theopticalgainspectrum 110 5.1 Introduction 110 5.2 Theeffectofpumppowerongainbandwidth 110 5.3 Theeffectoffiberdispersiononthegainspectrum 111 5.4 OPAswithsimilargainspectra 120 5.5 EquivalentgainspectraforOPAsusingpumpswithdifferentSOPs 123 5.6 Saturatedgainspectra 125 5.7 Fiberswithlongitudinaldispersionvariations 134 5.8 Fiberswithconstantlinearbirefringence 140 5.9 Few-modefibers 143 References 144 6 ThenonlinearSchro¨dingerequation 146 6.1 Introduction 146 6.2 DerivationoftheNLSEforanisotropicfiber 147 6.3 DerivationoftheNLSEforabirefringentfiber 148 6.4 AnalyticsolutionsofthescalarNLSE 151 6.5 IncludingtheRamangainintheNLSE 156 6.6 NumericalsolutionsoftheNLSEbythesplit-stepFouriermethod 157 6.7 ApplicationsoftheSSFMtofiberswithlongitudinalvariations 162 6.8 SourcesofSSFMsoftware 166 6.9 Conclusion 167 References 167 7 Pulsed-pumpOPAs 169 7.1 Introduction 169 7.2 Thequasi-CWregime 169 7.3 Thesplit-stepFouriermethod 172 7.4 Importantpulseshapes 173 7.5 Examplesofpulsed-pumpOPAs 178 7.6 Conclusion 185 References 185 8 OPOtheory 187 8.1 Introduction 187 8.2 FiberOPOtheory 188 8.3 Conclusion 192 References 193 Contents vii 9 QuantumnoisefigureoffiberOPAs 194 9.1 Introduction 194 9.2 Quantum-mechanicalderivationoftheOPAequations 195 9.3 Noisefigureofnon-degeneratefiberOPAs 200 9.4 Wavelengthexchange 203 9.5 NoisefigureofdegeneratefiberOPAs 205 9.6 EffectofRamangainonOPAnoisefigure 206 9.7 Conclusion 209 References 209 10 Pumprequirements 211 10.1 Introduction 211 10.2 Pumppowerrequirements 211 10.3 Polarizationconsiderations 213 10.4 Pumpamplitudefluctuations(pumpRIN) 213 10.5 Pumpphaseorfrequencyfluctuations 219 10.6 Conclusion 223 References 223 11 Performanceresults 226 11.1 Introduction 226 11.2 Pulseddevices 226 11.3 CWdevices 233 References 245 12 PotentialapplicationsoffiberOPAsandOPOs 249 12.1 Introduction 249 12.2 OPAsinopticalcommunication 249 12.3 OPAsinhigh-powerwavelengthconversion 273 12.4 OPOs 275 References 275 13 NonlinearcrosstalkinfiberOPAs 281 13.1 Introduction 281 13.2 Four-wavemixing 281 13.3 Cross-gainmodulation 292 13.4 Coherentcrosstalk 298 13.5 Cross-phasemodulation 299 13.6 Conclusion 300 References 301 viii Contents 14 Distributedparametricamplification 303 14.1 Introduction 303 14.2 DPAexperimentin75kmofDSF 304 14.3 PossibleextensionsofDPA 309 14.4 Conclusion 311 References 312 15 Prospectsforfuturedevelopments 315 15.1 Introduction 315 15.2 Fibers 315 15.3 Pumps 319 15.4 SBSsuppression 320 15.5 Integratedoptics 322 15.6 Pumpresonators 324 15.7 Discreteordistributedparametricamplification? 326 15.8 Conclusion 329 References 329 Appendices A.1 GeneraltheoremsforsolvingtypicalOPA 333 A.2 TheWKBapproximation 340 A.3 Jacobianellipticfunctionsolutions 344 A.4 Solutionoffourcoupledequationsforthesix-wavemodel 355 A.5 Summaryofusefulequations 358 Index 361 Acknowledgments ThanksareduetoK.K.-Y.Wong,J.Nielsen,M.JamshidifarandP.Vossforproofreading partsofthemanuscript.IwouldalsoliketothankG.Kalogerakis,J.M.ChavezBoggio, T.Torounidis,K.K.-Y.Wong,andP.Vossforprovidingsomeofthefigures.
Description: