ebook img

Feynman’s Operational Calculus and Beyond: Noncommutativity and Time-Ordering PDF

384 Pages·2015·4.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Feynman’s Operational Calculus and Beyond: Noncommutativity and Time-Ordering

OXFORDMATHEMATICALMONOGRAPHS SeriesEditors J.M.BALL W.T.GOWERS N.J.HITCHIN L.NIRENBERG R.PENROSE A.WILES OXFORDMATHEMATICALMONOGRAPHS Forafulllistoftitlespleasevisit http://ukcatalogue.oup.com/category/academic/series/science/maths/omm.do DonaldsonandKronheimer:TheGeometryofFour-Manifolds,paperback Woodhouse:GeometricQuantization,SecondEdition,paperback Hirschfeld:ProjectiveGeometriesoverFiniteFields,SecondEdition EvansandKawahigashi:QuantumSymmetriesofOperatorAlgebras Klingen:ArithmeticalSimilarities:PrimeDecompositionandFiniteGroupTheory MatsuzakiandTaniguchi:HyperbolicManifoldsandKleinianGroups Macdonald:SymmetricFunctionsandHallPolynomials,SecondEdition,paperback Catto,LeBris,andLions:MathematicalTheoryofThermodynamicLimits:Thomas-FermiTypeModels McDuffandSalamon:IntroductiontoSymplecticTopology,paperback Holschneider:Wavelets:AnAnalysisTool,paperback Goldman:ComplexHyperbolicGeometry ColbournandRosa:TripleSystems Kozlov,Maz’ya,andMovchan:AsymptoticAnalysisofFieldsinMulti-Structures Maugin:NonlinearWavesinElasticCrystals DassiosandKleinman:LowFrequencyScattering Ambrosio,Fusco,andPallara:FunctionsofBoundedVariationandFreeDiscontinuityProblems SlavyanovandLay:SpecialFunctions:AUnifiedTheoryBasedonSingularities Joyce:CompactManifoldswithSpecialHolonomy CarboneandSemmes:AGraphicApologyforSymmetryandImplicitness Boos:ClassicalandModernMethodsinSummability HigsonandRoe:AnalyticK-Homology Semmes:SomeNovelTypesofFractalGeometry IwaniecandMartin:GeometricFunctionTheoryandNonlinearAnalysis JohnsonandLapidus:TheFeynmanIntegralandFeynman’sOperationalCalculus,paperback LyonsandQian:SystemControlandRoughPaths Ranicki:AlgebraicandGeometricSurgery Ehrenpreis:TheUniversalityoftheRadonTransform LennoxandRobinson:TheTheoryofInfiniteSolubleGroups Ivanov:TheFourthJankoGroup Huybrechts:Fourier-MukaiTransformsinAlgebraicGeometry Hida:HilbertModularFormsandIwasawaTheory BoffiandBuchsbaum:ThreadingHomologythroughAlgebra Vazquez:ThePorousMediumEquation Benzoni-GavageandSerre:Multi-DimensionalHyperbolicPartialDifferentialEquations Calegari:FoliationsandtheGeometryof3-Manifolds BoyerandGalicki:SasakianGeometry Choquet-Bruhat:GeneralRelativityandtheEinsteinEquations IgnaczakandOstoja-Starzewski:ThermoelasticitywithFiniteWaveSpeeds Scott:TracesandDeterminantsofPseudodifferentialOperators FranchiandLeJan:HyperbolicDynamicsandBrownianMotion:AnIntroduction Jain,Srivastava,andTuganbaev:CyclicModulesandtheStructureofRings Ringström:OntheTopologyandFutureStabilityoftheUniverse Johnson,Lapidus,andNielsen:Feynman’sOperationalCalculusandBeyond:NoncommutativityandTime-Ordering Feynman’s Operational Calculus and Beyond Noncommutativity and Time-Ordering Gerald W. Johnson Michel L. Lapidus and Lance Nielsen 3 Feynman’sOperationalCalculusandBeyond.FirstEdition.GeraldW.Johnson,MichelL.LapidusandLanceNielsen. ©GeraldW.Johnson,MichelL.LapidusandLanceNielsen2015.Publishedin2015byOxfordUniversityPress. 3 GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©GeraldW.Johnson,MichelL.LapidusandLanceNielsen2015 Themoralrightsoftheauthorshavebeenasserted FirstEditionpublishedin2015 Impression:1 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressControlNumber:2015931993 ISBN978–0–19–870249–8 PrintedinGreatBritainby ClaysLtd,StIvesplc LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork. DEDICATIONS ToGeraldJohnson(Jerry),mywonderfulcoauthor,long-timefriendandcollaborator,forall hisuniquequalities,includinghishumor,incredibleintegrity,loyalty,generosityand perspicacity. Tohiswife,Joan,hislife-longcompanionandbestfriend,withgratitudeforherfriendship andforallshedoesforJerry. Tomyownwifeandcompanion,Odile,theloveofmylife,withoutwhomIcannotlive. TothememoryofRichardFeynmanandMarkKac,friendsandcolleagues,withwhomwe sharedmanythoughtsandjoyfulmoments. MichelL.Lapidus IfirstmetJerryJohnsonafteraskingsomefacultyattheUniversityofNebraska,Lincoln,if therewasanyoneinthedepartmentofmathematicswhoworkedwithpathintegrals.Iwastold totalktoDr.Johnson,whowasfinishingclassinsuch-and-sucharoom.Ifoundthisroomand, whileJerrywaserasingthechalkboard,Iaskedifheknewofagoodbookconcerningpath integrals.Theresponsewas,withasmile,“I’mwritingone.”Ofcourse,thebookinquestionis thatwrittenbyJerryandMichel,i.e.,TheFeynmanIntegralandFeynman’sOperational Calculus[114].Thishappenstance,sometwodecadesago,startedmedownthepaththatI continuetofollowtoday. Astimemovedon,Jerryconsentedtobemyadvisor,andIcontinuetobeverythankfulthatI wasluckyenoughtohavehadsomeonewithJerry’swisdom,integrity,humorandpatienceasa mentorandfriendduringmytimeasaPh.D.candidateandduringmyyearsinacademia.Itis becauseofJerrythatIlearnedhowtodoandwritemathematicsand,wereitnotforhim,I wouldnotbeacoauthorofthisvolume.Ithasbeenasingularprivilegetoworkonthisvolume withJerryandalsowithMichel,bothmathematiciansofenormoustalentandindividualsIhold inthehighestesteem. Finally,I’dliketothankmydearestfriendAmyforhergood-humoredtolerancetomy continualprotestationsthat“Ican’t,Ihavetoworkonthebook.”Amyandheryoungestson Sam(aswellasthefamilydogLucky!)oftengavemeaneededescapefromthemanuscript whenIcouldnotbeartolookatLATEXanylonger. LanceNielsen ACKNOWLEDGMENTS MichelLapidus’sresearchdescribedinpartsofthisbookwaspartiallysupportedbythe U.S.NationalScienceFoundation(NSF)undergrantsDMS-0707524andDMS-1107750 (aswellasbymanyearlierNSFresearchgrantssincethemid-1980s). The second author would also like to express his gratitude to many research insti- tutes at which he was a visiting professor while aspects of this research program were developed,includingespeciallytheMathematicalSciencesResearchInstitute(MSRI)in Berkeley,California,USA,theErwinSchrödingerInternationalInstituteofMathematical Physics in Vienna, Austria, and the Institut des Hautes Etudes Scientifiques (IHES) in Bures-sur-Yvette,Paris,France. MichelLapidus I would like to express my gratitude to the attendees—Jerry Johnson and Dave Skoug among others—of the functional integration seminar at the University of Nebraska, Lincoln, for the many opportunities to present and discuss my research, parts of which appearinthisbook.Iwouldalsoliketothankthesecondauthor,MichelLapidus,forpro- viding a portion of the funding for a trip to Riverside, California, in 2009, to begin the processofwritingthisvolume. LanceNielsen PREFACE Thisbookisaimedatprovidingacoherent,essentiallyself-contained,rigorousandcom- prehensiveabstracttheoryofFeynman’soperationalcalculusfornoncommutingoperators. AlthoughitisinspiredbyFeynman’soriginalheuristicsuggestionsandtime-orderingrules inhisseminalpaper[58],aswillbemadeabundantlyclearintheintroduction(Chapter1) andelsewhereinthetext,thetheorydevelopedinthisbookalsogoeswellbeyondthemin anumberofdirectionswhichwerenotanticipatedinFeynman’swork.Hence,thesecond partofthemaintitleofthisbook. It may be helpful to the reader to situate the present research monograph relative to a companion book [114], written by the first two named authors (Gerald Johnson and MichelLapidus)andtitledTheFeynmanIntegralandFeynman’sOperationalCalculus.(Let usreassurethereaderatoncethat[114]isnotaprerequisiteforthepresentbook,however, aswillbediscussedinmoredetailfurtheroninthispreface.)Thelatternearly800-page book[114]wasinitiallypublishedin2000byOxfordUniversityPress(withapaperback editionin2002andanelectroniceditioninthelate2000s)inthesameseriesasthepresent monograph.ItprovidesanumberofdifferentapproachestotheFeynmanpathintegral(or “sumsoverhistories”),inboth“real”and“imaginary”time. BeginningwithChapter14andendingwithChapter18,thesecondpartof[114](based, in part, on [110–113] along with [137–143]) develops a rigorous theory of Feynman’s operational calculus, using certain operator-valued Wiener and Feynman path integrals (called“analytic-in-massFeynmanintegrals”)aswellasassociatedcommutativeBanach algebrasoffunctionals,called“disentanglingalgebras,”andcorrespondingnoncommutat- iveoperations(namely,anoncommutativeadditionandmultiplication)actingonthem. Theresultingtime-indexedfamilyofdisentanglingalgebras,alongwiththeassociatednon- commutativeoperations,providesarichalgebraic,analyticandcombinatorialstructurefor thedevelopmentofaconcretetheoryofFeynman’soperationalcalculuswithinthecontext ofFeynmanpathintegralsandrelatedpathorstochasticintegrals. Ontheotherhand,Chapter19of[114](basedontheearlierjointworkoftheauthorsof [114]withBrianDeFacioin[33,34])beginstobuildabridgebetweentheaboverigorous concreteversionoftheoperationalcalculusandapossible,moregeneraloperationalcalcu- lusvalidforabstractoperators(actingonBanachorHilbertspaces)notnecessarilyarising viaWienerorFeynmanfunctionalsandassociatedpathintegrals.Theconnectionswitha largeclassofassociatedevolutionequationsarealsostudiedinChapter19of[114]. Inasense,Chapters15–18togetherwith,specifically,Chapter19of[114]laythefoun- dationsandprovideapossiblestartingpointforthedevelopmentofafullyrigorousand moreabstracttheoryofFeynman’soperationalcalculus,whichistheobjectofthepresent book.ThereaderfamiliarwithChapters15–19of[114]willrecognizesomeaspectsof, andmotivationsfor,thetheorydevelopedinthepresentbook,butinessence(withthe

Description:
This book is aimed at providing a coherent, essentially self-contained, rigorous and comprehensive abstract theory of Feynman's operational calculus for noncommuting operators. Although it is inspired by Feynman's original heuristic suggestions and time-ordering rules in his seminal 1951 paper An op
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.